ﻻ يوجد ملخص باللغة العربية
In this work we analyze some judiciously chosen solutions of Kerr Black Holes with Scalar Hair (KBHsSH) of special interest for Gravitational Wave (GW) events originated from Extreme Mass Ratio Inspirals (EMRIs). Because of the off-center distribution of energy density, these spacetimes are warped in such a way that not all metric functions behave monotonically on the equatorial plane as in the exterior region of Kerr black holes (KBHs). This has great impact on the orbital parameters, which in turn affects the imprints on signals descendant from EMRIs in a adiabatic evolution. By investigating circular obit parameters, we unveil what qualitative features could be present in the signals that are new and distinct compared to KBHs, and we evolve some inspirals by employing the usual quadrupole formula approximation. We show that the frequencies of the emitted signals behave nonmonotonically, i.e. they can backward chirp, and for some particular cases they can become arbitrarily small, falling below LISAs sensibility range. Finally, we present two sets of waveforms produced by a noncircular EMRI in which the compact object (CO) follows a type of geodesic motion typically present in spacetimes with a static ring (SR), in which the compact object is periodically momentarily at rest.
The capture of a stellar-mass compact object by a supermassive black hole and the subsequent inspiral (driven by gravitational radiation emission) constitute one of the most important sources of gravitational waves for space-based observatories like
Kundt spacetimes are of great importance in general relativity in 4 dimensions and have a number of topical applications in higher dimensions in the context of string theory. The degenerate Kundt spacetimes have many special and unique mathematical p
Using the quasi-Maxwell formalism, we derive the necessary and sufficient conditions for the matching of two stationary spacetimes along a stationary timelike hypersurface, expressed in terms of the gravitational and gravitomagnetic fields and the 2-
Extreme mass ratio in-spirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending in the gra
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.