ترغب بنشر مسار تعليمي؟ اضغط هنا

Identity-aware Facial Expression Recognition in Compressed Video

134   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$times$ faster inference with compressed data.



قيم البحث

اقرأ أيضاً

How to extract effective expression representations that invariant to the identity-specific attributes is a long-lasting problem for facial expression recognition (FER). Most of the previous methods process the RGB images of a sequence, while we argu e that the off-the-shelf and valuable expression-related muscle movement is already embedded in the compression format. In this paper, we target to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possibly extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independence of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image-based methods on the typical FER benchmarks with about 3 times faster inference.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance cau sed by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
The performance of a computer vision model depends on the size and quality of its training data. Recent studies have unveiled previously-unknown composition biases in common image datasets which then lead to skewed model outputs, and have proposed me thods to mitigate these biases. However, most existing works assume that human-generated annotations can be considered gold-standard and unbiased. In this paper, we reveal that this assumption can be problematic, and that special care should be taken to prevent models from learning such annotation biases. We focus on facial expression recognition and compare the label biases between lab-controlled and in-the-wild datasets. We demonstrate that many expression datasets contain significant annotation biases between genders, especially when it comes to the happy and angry expressions, and that traditional methods cannot fully mitigate such biases in trained models. To remove expression annotation bias, we propose an AU-Calibrated Facial Expression Recognition (AUC-FER) framework that utilizes facial action units (AUs) and incorporates the triplet loss into the objective function. Experimental results suggest that the proposed method is more effective in removing expression annotation bias than existing techniques.
149 - Siwei Liu 2021
To overcome the limitations of convolutional neural network in the process of facial expression recognition, a facial expression recognition model Capsule-LSTM based on video frame sequence is proposed. This model is composed of three networks includ ingcapsule encoders, capsule decoders and LSTM network. The capsule encoder extracts the spatial information of facial expressions in video frames. Capsule decoder reconstructs the images to optimize the network. LSTM extracts the temporal information between video frames and analyzes the differences in expression changes between frames. The experimental results from the MMI dataset show that the Capsule-LSTM model proposed in this paper can effectively improve the accuracy of video expression recognition.
Training robust deep video representations has proven to be much more challenging than learning deep image representations. This is in part due to the enormous size of raw video streams and the high temporal redundancy; the true and interesting signa l is often drowned in too much irrelevant data. Motivated by that the superfluous information can be reduced by up to two orders of magnitude by video compression (using H.264, HEVC, etc.), we propose to train a deep network directly on the compressed video. This representation has a higher information density, and we found the training to be easier. In addition, the signals in a compressed video provide free, albeit noisy, motion information. We propose novel techniques to use them effectively. Our approach is about 4.6 times faster than Res3D and 2.7 times faster than ResNet-152. On the task of action recognition, our approach outperforms all the other methods on the UCF-101, HMDB-51, and Charades dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا