ﻻ يوجد ملخص باللغة العربية
Supermassive black holes launch highly relativistic jets with velocities reaching Lorentz factors as high as $Gamma>50$. How the jets accelerate to such high velocities and where along the jet do they reach terminal velocity are open questions that are tightly linked to their structure, launching and dissipation mechanisms. Changes in the beaming factor along the jets could potentially reveal jet acceleration, deceleration, or bending. We aim to (1) quantify the relativistic effects in multiple radio frequencies and (2) study possible jet velocity--viewing angle variations at parsec scales. We used the state-of-the-art code Magnetron to model light curves from the University of Michigan Radio Observatory and the Mets{a}hovi Radio Observatorys monitoring programs in five frequencies covering about 25 years of observations in the 4.8-37~GHz range for 61 sources. We supplement our data set with high-frequency radio observations in the 100-340~GHz range from ALMA, CARMA, and SMA. For each frequency we estimate the Doppler factor which we use to quantify possible changes in the relativistic effects along the jets. The majority of our sources do not show any statistically significant difference in their Doppler factor across frequencies. This is consistent with constant velocity in a conical jet, as expected at parsec scales. However, our analysis reveals 17 sources where relativistic beaming changes as a function of frequency. In the majority of cases the Doppler factor increases towards lower frequencies. Only 1253-053 shows the opposite behavior. By exploring their jet properties we find that the jet of 0420-014 is likely bent across the 4.8-340~GHz range. For 0212+735 the jet is likely parabolic, and still accelerating in the 4.8-37~GHz range. We discuss possible interpretations for the trends found in the remaining sources.
Radio polarimetry is an invaluable tool to investigate the physical conditions and variability processes in active galactic nuclei (AGN) jets. However, detecting their linear and circular polarization properties is a challenging endeavor due to their
Being dominated by non-thermal (synchrotron and inverse Compton) emission from a relativistic jet, blazars offer important clues to the structure and radiative processes in extragalactic jets. Crucial information is provided by blazars spectral energ
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of radio-loud Active Galactic Nuclei. For a summary, we refer to the paper.
Our view of the properties of extragalactic radio jets and the impact they have on the host galaxy has expanded in the recent years. This has been possible thanks to the data from new or upgraded radio telescopes. This review briefly summarises the c
We report the detection of extended X-ray emission from two high-redshift radio quasars. These quasars, J1405+0415 at $z$=3.208 and J1610+1811 at $z$=3.118, were observed in a Chandra snapshot survey selected from a complete sample of the radio-brigh