ﻻ يوجد ملخص باللغة العربية
Our view of the properties of extragalactic radio jets and the impact they have on the host galaxy has expanded in the recent years. This has been possible thanks to the data from new or upgraded radio telescopes. This review briefly summarises the current status of the field and describes some of the exciting recent results and the surprises they have brought. In particular, the physical properties of radio jets as function of their radio power will be discussed together with the advance made in understanding the life-cycle of radio sources. The evolutionary stage (e.g. newly born, dying, restarted) of the radio AGN can be derived from their morphology and properties of the radio spectra. The possibilities offered by the new generation of low-frequency radio telescopes make it possible to derive (at least to first order) the time-scale spent in each phase. The presence of a cycle of activity ensures a recurrent impact of the radio jets on their surrounding inter-stellar and inter-galactic medium and, therefore, their relevance for AGN feedback. The last part is dedicated to the recent results showing the effect of jets on the surrounding galactic medium. The predictions made by numerical simulations on the impact of a radio jet (and in particular a newly born jet) on a clumpy medium describe well what is seen by the observations. The high resolution studies of jet-driven outflows of cold gas (HI and molecular) has provided new important addition both in term of quantifying the impact of the outflows and their relevance for feedback as well as for providing an unexpected view of the physical conditions of the gas under these extreme conditions.
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo
Using high-resolution radio imaging with VLBI techniques, the TANAMI program has been observing the parsec-scale radio jets of southern (declination south of -30{deg}) gamma-ray bright AGN simultaneously with Fermi/LAT monitoring of their gamma-ray e
We present multi-epoch, parsec-scale core brightness temperature observations of 447 AGN jets from the MOJAVE and 2cm Survey programs at 15 GHz from 1994 to 2019. The brightness temperature of each jet over time is characterized by its median value a
The class of Double-Double Radio Galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper we synthesize synchrotron images for DDRGs based on s
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and