ﻻ يوجد ملخص باللغة العربية
Enhanced magnetism has recently been reported for the topological-insulator/ferromagnet interface Bi$_2$Se$_3$/EuS with Curie temperatures claimed to be raised above room temperature from the bulk EuS value of 16 K. Here we investigate the analogous interface Bi$_2$Se$_3$/EuSe. EuSe is a low-temperature layered ferrimagnet that is particularly sensitive to external perturbations. We find that superconducting quantum interference device (SQUID) magnetometry of Bi$_2$Se$_3$/EuSe heterostructures reveals precisely the magnetic phase diagram known from EuSe, including the ferrimagnetic phase below 5 K, without any apparent changes from the bulk behavior. Choosing a temperature of 10 K to search for magnetic enhancement, we determine an upper limit for a possible magnetic coercive field of 3 mT. Using interface sensitive x-ray absorption spectroscopy we verify the magnetic divalent configuration of the Eu at the interface without contamination by Eu3+, and by x-ray magnetic circular dichroism (XMCD) we confirm at the interface the magnetic hysteresis obtained by SQUID. XMCD data obtained at 10 K in a magnetic field of 6 T indicate a magnetic spin moment of mz,spin = 7 $mu$B/Eu$^{2+}$, in good agreement with the SQUID data and the expected theoretical moment of Eu2+. Subsequent XMCD measurements in zero field show, however, that sizable remanent magnetization is absent at the interface for temperatures down to about 10 K.
We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)$_2$(Se,Te)$_3$ family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-sele
By means of relativistic density functional theory (DFT) calculations we study electron band structure of the topological insulator (TI) Bi$_2$Se$_3$ thin films deposited on the ferromagnetic insulator (FMI) EuS substrate. In the Bi$_2$Se$_3$/EuS het
In this paper we present detailed study of the density of states near defects in Bi$_2$Se$_3$. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interf
Topological superconductivity is an exotic phase of matter in which the fully gapped superconducting bulk hosts gapless Majorana surface states protected by topology. Intercalation of copper, strontium or niobium between the quintuple layers of the t
The parkerite-type ternary chalcogenide Bi$_2$Rh$_3$Se$_2$ was discovered to be a charge density wave (CDW) superconductor. However, there was a debate on whether the observed phase transition at 240 K could be attributed to the formation of CDW orde