ترغب بنشر مسار تعليمي؟ اضغط هنا

Interface induced states at the boundary between a 3D topological insulator Bi$_2$Se$_3$ and a ferromagnetic insulator EuS

435   0   0.0 ( 0 )
 نشر من قبل Sergey Eremeev
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of relativistic density functional theory (DFT) calculations we study electron band structure of the topological insulator (TI) Bi$_2$Se$_3$ thin films deposited on the ferromagnetic insulator (FMI) EuS substrate. In the Bi$_2$Se$_3$/EuS heterostructure, the gap opened in the spectrum of the topological state has a hybridization character and is shown to be controlled by the Bi$_2$Se$_3$ film thickness, while magnetic contribution to the gap is negligibly small. We also analyzed the effect of Eu doping on the magnetization of the Bi$_2$Se$_3$ film and demonstrated that the Eu impurity induces magnetic moments on neighboring Se and Bi atoms an order of magnitude larger than the substrate-induced moments. Recent magnetic and magneto-transport measurements in EuS/Bi$_2$Se$_3$ heterostructure are discussed.



قيم البحث

اقرأ أيضاً

We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ la yers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify t he effects of inversion-symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the ${+2}$-valence state and introduces an acceptor in the bulk band gap. The Mn-acceptor has predominantly $p$-character, and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn $d$-levels and the $p$-levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasi-resonant coupling and the strong real-space overlap between the spin-chiral surface states and the mid-gap spin-polarized Mn-acceptor states.
Using scanning tunneling spectroscopy we have studied the effects of nitrogen gas exposure on the bismuth selenide density of states. We observe a shift in the Dirac point which is qualitatively consistent with theoretical modeling of nitrogen bindin g to selenium vacancies. In carefully controlled measurements, Bi$_2$Se$_3$ crystals were initially cleaved in a helium gas environment and then exposed to a 22 SCFH flow of ultra-high purity N$_2$ gas. We observe a resulting change in the spectral curves, with the exposure effect saturating after approximately 50 minutes, ultimately bringing the Dirac point about 50 meV closer to the Fermi level. These results are compared to density functional theoretical calculations, which support a picture of $N_2$ molecules physisorbing near Se vacancies and dissociating into individual N atoms which then bind strongly to Se vacancies. In this interpretation, the binding of the N atom to a Se vacancy site removes the surface defect state created by the vacancy and changes the position of the Fermi energy with respect to the Dirac point.
The magnetic proximity effect is a fundamental feature of heterostructures composed of layers of topological insulators and magnetic materials since it underlies many potential applications in devices with novel quantum functionality. Within density functional theory we study magnetic proximity effect at the 3D topological insulator/magnetic insulator (TI/MI) interface in Bi$_2$Se$_3$/MnSe(111) system as an example. We demonstrate that a gapped ordinary bound state which spectrum depends on the interface potential arises in the immediate region of the interface. The gapped topological Dirac state also arises in the system owing to relocation to deeper atomic layers of topological insulator. The gap in the Dirac cone is originated from an overlapping of the topological and ordinary interfacial states. This result being also corroborated by the analytic model, is a key aspect of the magnetic proximity effect mechanism in the TI/MI structures.
We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)$_2$(Se,Te)$_3$ family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-sele ctive magnetic proximity effects at the very TI/EuS interface. A systematic analysis reveals that there is neither significant induced magnetism within the TI nor an enhancement of the Eu magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te, and Se sites are lower than the estimated detection limit of the XMCD measurements of $sim!10^{-3}$ $mu_mathrm{B}$/at.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا