ﻻ يوجد ملخص باللغة العربية
Chip-based Evanescent Light Scattering (cELS) utilizes the multiple modes of a high-index contrast optical waveguide to provide a near-field illumination for unlabeled samples. The scattered light off the sample is engineered to have random phase differences within the integration time of the camera to mitigate the coherent speckle noise, thus enabling label-free superior-contrast imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs) and liposomes, dynamics of living HeLa cells etc. The article explains and validates experimentally the physics behind cELS, by demonstrating a wide highly multi-moded straight waveguide as a partially coherent light source. Next, to circumvent the diffraction-limit in cELS, intensity-fluctuation based algorithms are employed with spatially incoherent light engineered via multiple-arms waveguide chip. The proof-of-concept results are demonstrated on 100 nm polystyrene beads. We believe cELS will further propel the nascent field of label-free super-resolution microscopy finding applications in cell biology.
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the universal application of supe
Spatial resolution is one of the most important specifications of an imaging system. Recent results in quantum parameter estimation theory reveal that an arbitrarily small distance between two incoherent point sources can always be efficiently determ
Abbes resolution limit, one of the best-known physical limitations, poses a great challenge for any wave systems in imaging, wave transport, and dynamics. Originally formulated in linear optics, this Abbes limit can be broken using nonlinear optical
One of the main characteristics of optical imaging systems is the spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolutio
We demonstrate super-resolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet (YAG) crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is $ap