ﻻ يوجد ملخص باللغة العربية
Spatial resolution is one of the most important specifications of an imaging system. Recent results in quantum parameter estimation theory reveal that an arbitrarily small distance between two incoherent point sources can always be efficiently determined through the use of a spatial mode sorter. However, extending this procedure to a general object consisting of many incoherent point sources remains challenging, due to the intrinsic complexity of multi-parameter estimation problems. Here, we generalize the Richardson-Lucy (RL) deconvolution algorithm to address this challenge. We simulate its application to an incoherent confocal microscope, with a Zernike spatial mode sorter replacing the pinhole used in a conventional confocal microscope. We test different spatially incoherent objects of arbitrary geometry, and we find that the resolution enhancement of sorter-based microscopy is on average over 30% higher than that of a conventional confocal microscope using the standard RL deconvolution algorithm. Our method could potentially be used in diverse applications such as fluorescence microscopy and astronomical imaging.
The transverse structure of light is recognized as a resource that can be used to encode information onto photons and has been shown to be useful to enhance communication capacity as well as resolve point sources in superresolution imaging. The Lague
One of the main characteristics of optical imaging systems is the spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolutio
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical di
The Hermite-Gaussian (HG) modes, sometimes also referred to as transverse electromagnetic modes in free space, form a complete and orthonormal basis that have been extensively used to describe optical fields. In addition, these modes have been shown
The dimension of the state space for information encoding offered by the transverse structure of light is usually limited by the finite size of apertures. The widely used orbital angular momentum (OAM) number of Laguerre-Gaussian (LG) modes in free-s