ﻻ يوجد ملخص باللغة العربية
We present the first game characterization of contrasimilarity, the weakest form of bisimilarity. The game is finite for finite-state processes and can thus be used for contrasimulation equivalence checking, of which no tool has been capable to date. A machine-checked Isabelle/HOL formalization backs our work and enables further use of contrasimilarity in verification contexts.
We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of standard powers, though staying short of modal bisimulati
A traditional assumption in game theory is that players are opaque to one another -- if a player changes strategies, then this change in strategies does not affect the choice of other players strategies. In many situations this is an unrealistic assu
We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially mismatched priorities among a hierarchy of policy-makers
Is there a joint distribution of $n$ random variables over the natural numbers, such that they always form an increasing sequence and whenever you take two subsets of the set of random variables of the same cardinality, their distribution is almost t
We want to introduce another smoothing approach by treating each geometric element as a player in a game: a quest for the best element quality. In other words, each player has the goal of becoming as regular as possible. The set of strategies for eac