ﻻ يوجد ملخص باللغة العربية
Is there a joint distribution of $n$ random variables over the natural numbers, such that they always form an increasing sequence and whenever you take two subsets of the set of random variables of the same cardinality, their distribution is almost the same? We show that the answer is yes, but that the random variables will have to take values as large as $2^{2^{dots ^{2^{Thetaleft(frac{1}{epsilon}right)}}}}$, where $epsilonleq epsilon_n$ measures how different the two distributions can be, the tower contains $n-2$ $2$s and the constants in the $Theta$ notation are allowed to depend on $n$. This result has an important consequence in game theory: It shows that even though you can define extensive form games that cannot be implemented on players who can tell the time, you can have implementations that approximate the game arbitrarily well.
We consider a game in which players are the vertices of a directed graph. Initially, Nature chooses one player according to some fixed distribution and gives her a buck, which represents the request to perform a chore. After completing the task, the
We present the first game characterization of contrasimilarity, the weakest form of bisimilarity. The game is finite for finite-state processes and can thus be used for contrasimulation equivalence checking, of which no tool has been capable to date.
We want to introduce another smoothing approach by treating each geometric element as a player in a game: a quest for the best element quality. In other words, each player has the goal of becoming as regular as possible. The set of strategies for eac
Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. While theoretical approaches to the problem have hit some limits, a recent research direction initiated by Duetting et al. (2019) consis
In this paper, a multi-user cooperative computing framework is applied to enable mobile users to utilize available computing resources from other neighboring users via direct communication links. An incentive scheme based on Bertrand game is proposed