ﻻ يوجد ملخص باللغة العربية
Transport in Josephson junctions is commonly described using a simplifying assumption called the Andreev approximation, which assumes that excitations are fixed at the Fermi momentum and only Andreev reflections occur at interfaces (with no normal reflections). This approximation is appropriate for BCS-type superconductors, where the chemical potential vastly exceeds the pairing gap, but it breaks down for superconductors with low carrier density, such as topological superconductors, doped semiconductors, or superfluid quantum gases. Here, we present a generic $analytical$ framework for calculating transport in Josephson junctions that lifts up the requirement of the Andreev approximation. Using this general framework, we study in detail transport in Josephson junctions across the BCS-BEC crossover, which describes the evolution from a BCS-type superconductor with loosely-paired Cooper pairs to a BEC of tighly-paired dimers. As the interaction is tuned from the BCS to the BEC regime, we find that the overall subgap current caused by multiple Andreev reflections decreases, but nonlinearities in the current-voltage characteristic called the subharmonic gap structure become more pronounced near the intermediate unitary limit, giving rise to sharp peaks and dips in the differential conductance with even $negative$ conductance at specific voltages.
We consider a ground-state wide-gap band insulator turning into a nonequilibrium excitonic insulator (NEQ-EI) upon visiting properly selected and physically relevant highly excited states. The NEQ-EI phase, characterized by self-sustained oscillation
We present a theory of superconducting p-n junctions. We consider a 2-band model of doped bulk semiconductors with attractive interactions between the charge carriers and derive the superconducting order parameter, the quasiparticle density of states
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant
The phase transition to superfluidity and the BCS-BEC crossover for an ultracold gas of fermionic atoms is discussed within a functional renormalization group approach. Non-perturbative flow equations, based on an exact renormalization group equation
The crossover between low and high density regimes of exciton-polariton condensates is examined using a BCS wavefunction approach. Our approach is an extension of the BEC-BCS crossover theory for excitons, but includes a cavity photon field. The appr