ﻻ يوجد ملخص باللغة العربية
Stimulated by the newly reported doubly-charmed tetraquark state $T_{cc}^+$ by LHCb, we carry out a systematic investigation of the $S$-wave interactions between the charmed meson ($D,,D^{*}$) in $H$-doublet and the charmed meson ($D_{1},,D_{2}^{*}$) in $T$-doublet by adopting the one-boson-exchange model. Both the $S$-$D$ wave mixing effect and the coupled channel effect are taken into account. By performing a quantitative calculation, we suggest that the $S$-wave $D^{*} D_{1}$ states with $I(J^{P})=0(0^{-},,1^{-})$ and the $S$-wave $D^{*}D_{2}^{*}$ state with $I(J^{P})=0(1^{-})$ should be viewed as the most promising candidates of the doubly-charmed molecular tetraquark states, and the $S$-wave $DD_{1}$ state with $I(J^{P})=0(1^{-})$, the $S$-wave $DD_{2}^{*}$ state with $I(J^{P})=0(2^{-})$, and the $S$-wave $D^{*}D_{2}^{*}$ state with $I(J^{P})=0(2^{-})$ are the possible doubly-charmed molecular tetraquark candidates. With the accumulation of experimental data at Run III and after High-Luminosity-LHC upgrade, these predicted doubly-charmed molecular tetraquark states can be accessible at LHCb in the near future.
We perform a systematic exploration of the possible doubly charmed molecular pentaquarks composed of $Sigma_c^{(*)}D^{(*)}$ with the one-boson-exchange potential model. After taking into account the $S-D$ wave mixing and the coupled channel effects,
The phenomenology of the so-called X, Y and Z hadronic resonances is hard to reconcile with standard charmonium or bottomonium interpretations. It has been suggested that some of these new hadrons can possibly be described as tightly bound tetraquark
The chiral corrections to the magnetic moments of the spin-$frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calcul
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spec
The doubly charmed exotic state $T_{cc}$ recently discovered by the LHCb Collaboration could well be a $DD^{*}$ molecular state long predicted in various theoretical models, in particular, the $DD^*$ isoscalar axial vector molecular state predicted i