ترغب بنشر مسار تعليمي؟ اضغط هنا

Another doubly charmed molecular resonance $T_{cc}^{prime+}(3876)$

105   0   0.0 ( 0 )
 نشر من قبل Chen Rui
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spectrum, which lies just below the $D^0D^{*+}$ threshold around 273 keV. In this work, we study the $D^0D^{*+}/D^+D^{*0}$ interactions with the one-boson-exchange effective potentials and consider the isospin breaking effect carefully. We not only reproduce the mass of the newly observed $T_{cc}^+$ very well in the doubly charmed molecular tetraquark scenario, but also predict the other doubly charmed partner resonance $T_{cc}^{prime+}$ with $m=3876~text{MeV}$, and $Gamma= 412~text{keV}$. The prime decay modes of the $T_{cc}^{prime+}$ are $D^0D^+gamma$ and $D^+D^0pi^0$.



قيم البحث

اقرأ أيضاً

The mass and coupling of the doubly charmed $J^P=0^{-}$ diquark-antidiquark states $T_{cc;bar{s} bar{s}}^{++}$ and $T_{cc;bar{d} bar{s}}^{++}$ that bear two units of the electric charge are calculated by means of QCD two-point sum rule method. Comput ations are carried out by taking into account vacuum condensates up to and including terms of tenth dimension. The dominant $S$-wave decays of these tetraquarks to a pair of conventional $ D_{s}^{+}D_{s0}^{ast +}(2317)$ and $D^{+}D_{s0}^{ast +}(2317)$ mesons are explored using QCD three-point sum rule approach, and their widths are found. The obtained results $m_{T}=(4390~pm 150)~mathrm{MeV}$ and $Gamma =(302 pm 113~mathrm{MeV}$) for the mass and width of the state $T_{cc;bar{ s} bar{s}}^{++}$, as well as spectroscopic parameters $widetilde{m} _{T}=(4265pm 140)~mathrm{MeV}$ and $widetilde{Gamma }=(171~pm 52)~ mathrm{MeV}$ of the tetraquark $T_{cc;bar{d} bar{s}}^{++}$ may be useful in experimental studies of exotic resonances.
The doubly charmed exotic state $T_{cc}$ recently discovered by the LHCb Collaboration could well be a $DD^{*}$ molecular state long predicted in various theoretical models, in particular, the $DD^*$ isoscalar axial vector molecular state predicted i n the one-boson-exchange model. In this work, we study the $DDD^*$ system in the Gaussian Expansion Method with the $DD^*$ interaction derived from the one-boson-exchange model and constrained by the precise binding energy of $273pm63$ keV of $T_{cc}$ with respect to the $D^{*+}D^0$ threshold. We show the existence of a $DDD^*$ state with a binding energy of a few hundred keV and spin-parity $1^-$. Its main decay modes are $DDDpi$ and $DDDgamma$. The existence of such a state could in principle be confirmed with the upcoming LHC data and will unambiguously determine the nature of the $T_{cc}^+$ state and of the many exotic state of similar kind, thus deepening our understanding of the non-perturbative strong interaction.
An exotic narrow state in the $D^0D^0pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at cen tre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $ccbar{u}bar{d}$ and spin-parity quantum numbers $mathrm{J}^{mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.
139 - Ning Li , Zhi-Feng Sun , Xiang Liu 2021
In 2012, we investigated the possible molecular states composed of two charmed mesons [Phys.Rev. D 88, 114008 (2013), arXiv:1211.5007 [hep-ph](2012)]. The $D^*D$ system with the quantum numbers of $I(J^P)=0(1^+)$ was found to be a good candidate of t he loosely bound molecular state. This state is very close to the $D^*D$ threshold with a binding energy around 0.47 MeV. This prediction was confirmed by the new LHCb observation of $T_{cc}^+$ [see Franz Muheims talk at the European Physical Society conference on high energy physics 2021].
101 - Rui Chen , Ning Li , Zhi-Feng Sun 2021
We perform a systematic exploration of the possible doubly charmed molecular pentaquarks composed of $Sigma_c^{(*)}D^{(*)}$ with the one-boson-exchange potential model. After taking into account the $S-D$ wave mixing and the coupled channel effects, we predict several possible doubly charmed molecular pentaquarks, which include the $Sigma_cD$ with $I(J^P) = 1/2(1/2^-)$, $Sigma_c^*D$ with $1/2(3/2^-)$, and $Sigma_cD^*$ with $1/2(1/2^-)$, $1/2(3/2^-)$. The $Sigma_cD$ state with $3/2(1/2^-)$ and $Sigma_cD^*$ state with $3/2(1/2^-)$ may also be suggested as candidates of doubly charmed molecular pentaquarks. The $Sigma_cD$ and $Sigma_c^*D$ states can be searched for by analyzing the $Lambda_cDpi$ invariant mass spectrum of the bottom baryon and $B$ meson decays. The $Sigma_cD^*$ states can be searched for in the invariant mass spectrum of $Lambda_cD^*pi$, $Lambda_cDpipi$ and $Lambda_cDpigamma$. Since the width of $Sigma_c^*$ is much larger than that of $D^*$, $Sigma_c^*Drightarrow Lambda_cDpi$ will be the dominant decay mode. We sincerely hope these candidates for the doubly charmed molecular pentaqurks will be searched by LHCb or BelleII collaboration in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا