ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral compression by phase doubling in second harmonic generation

145   0   0.0 ( 0 )
 نشر من قبل Yan Feng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In second harmonic generation, the phase of the optical field is doubled which has important implication. Here the phase doubling effect is utilized to solve a long-standing challenge in power scaling of single frequency laser. When a (-{pi}/2, {pi}/2) binary phase modulation is applied to a single frequency seed laser to broaden the spectrum and suppress the stimulated Brillouin scattering in high power fiber amplifier, the second harmonic of the phase-modulated laser will return to single frequency, because the (-{pi}/2, {pi}/2) modulation is doubled to (-{pi}, {pi}) for the second harmonic. A compression rate as high as 95% is demonstrated in the experiment limited by the electronic bandwidth of the setup, which can be improved with optimized devices.



قيم البحث

اقرأ أيضاً

A scheme for active second harmonics generation is suggested. The system comprises $N$ three-level atoms in ladder configuration, situated into resonant cavity. It is found that the system can lase in either superradiant or subradiant regime, dependi ng on the number of atoms $N$. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion.
We report second harmonic generation from a titanium indiffused lithium niobate waveguide resonator device whose cavity length is locked to the fundamental pump laser using an on-chip phase modulator. The device remains locked for more than 5 minutes , producing more than 80% of the initial second harmonic power. The stability of the system is seen to be limited by DC-drift, a known effect in many lithium niobate systems that include deposited electrodes. The presented device explores the suitability of waveguide resonators in this platform for use in larger integrated networks.
We observe second harmonic generation via random quasi-phase-matching in a 2.0 mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.
We present a method, based on noncollinear second harmonic generation, to evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of bo th fundamental beams. The resulting polarization charts allows to verify if Kleinman symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from Gallium Nitride layers are reported. The proposed method does not require an angular scan thus is useful when the generated signal is strongly affected by sample rotation
119 - Yafeng Wang , Liming Liao , Tao Hu 2019
Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano resonances in the spectral vicinity of exciton-polariton modes. The output SHG spectra after SHG interacting with exciton polariton shows a resonant en hancement peak accompanied by a suppression dip originating from the constructive and destructive interference respectively. It is demonstrated that the Fano line shape, and thus the Fano asymmetry parameter q, can be tuned by the phase-shift of the two channels. The phase-dependent q was calculated and the model describes our experimental results well. In particular, the phase-to-q relation unveil the crucial information about the dynamics of the system, e.g., defining the line shape of output SHG spectra in a superposition of quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا