ترغب بنشر مسار تعليمي؟ اضغط هنا

Waveguide Resonator with Integrated Phase Modulator for Second Harmonic Generation

123   0   0.0 ( 0 )
 نشر من قبل Michael Stefszky Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report second harmonic generation from a titanium indiffused lithium niobate waveguide resonator device whose cavity length is locked to the fundamental pump laser using an on-chip phase modulator. The device remains locked for more than 5 minutes, producing more than 80% of the initial second harmonic power. The stability of the system is seen to be limited by DC-drift, a known effect in many lithium niobate systems that include deposited electrodes. The presented device explores the suitability of waveguide resonators in this platform for use in larger integrated networks.



قيم البحث

اقرأ أيضاً

Second harmonic generation (SHG), as one of the most significant c{hi}(2) nonlinear optical processes, plays crucial roles in a broad variety of optical and photonic applications. Designing various delicate schemes to achieve highly efficient SHG has become a long standing and challenging topic in field of nonlinear optics. Despite numerous success on SHG based on birefringent phase matching and quasi-phase matching, so far, modal phase matching (MPM) for SHG in tightly light-confined structures has still in its infancy. Here, we propose a new scheme to realize highly-efficient SHG via MPM by using a nanophotonic LiNbO3 thin-film waveguide consists of two bonded layers with internally reversed polarizations. In such a dual-layer ridge waveguide based on lithium niobate on insulator, upon optical excitation at 1574.6 nm, we observe SHG at 787.3 nm with ultrahigh conversion efficiency of 5,540% /W/cm/cm experimentally. This work advances our understanding on modal-phase-matched SHG and other quadratic optical nonlinear process, offering additional strategies for development of high-performance nonlinear photonic devices in on-chip platforms.
158 - Tingting Liu , Shuyuan Xiao 2021
The ability to engineer nonlinear optical processes in all-dielectric nanostructures is both of fundamental interest and highly desirable for high-performance, robust, and miniaturized nonlinear optical devices. Herein, we propose a novel paradigm fo r the efficient tuning of second-harmonic generation (SHG) process in dielectric nanoantennas by integrating with chalcogenide phase change material. In a design with Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) film sandwiched between the AlGaAs nanoantennas and AlO$_{x}$ substrate, the nonlinear SHG signal from the AlGaAs nanoantennas can be boosted via the resonantly localized field induced by the optically-induced Mie-type resonances, and further modulated by exploiting the GST amorphous-to-crystalline phase change in a non-volatile, multi-level manner. The tuning strategy originates from the modulation of resonant conditions by changes in the refractive index of GST. With a thorough examination of tuning performances for different nanoantenna radii, a maximum modulation depth as high as 540$%$ is numerically demonstrated. This work not only reveals out the potential of GST in optical nonlinearity control, but also provides promising strategy in smart designing tunable and reconfigurable nonlinear optical devices, e.g., light emitters, modulators, and sensors.
We demonstrate a polarization rotator integrated at the output of a GaAs waveguide producing type I second harmonic generation (SHG). Form-birefringent phase matching between the pump fundamental transverse electric (TE) mode near 2.0 $mu$m wavelengt h and the signal fundamental transverse magnetic (TM) mode efficiently generates light at 1.0 $mu$m wavelength. A SiN waveguide layer is integrated with the SHG device to form a multi-functional photonic integrated circuit. The polarization rotator couples light between the two layers and rotates the polarization from TM to TE or from TE to TM. With a TE-polarized 2.0 $mu$m pump, type I SHG is demonstrated with the signal rotated to TE polarization. Passive transmission near 1.0 $mu$m wavelength shows ~80 % polarization rotation across a broad bandwidth of ~100 nm. By rotating the signal polarization to match that of the pump, this SHG device demonstrates a critical component of an integrated self-referenced octave-spanning frequency comb. This device is expected to provide crucial functionality as part of a fully integrated optical frequency synthesizer with resolution of less than one part in 10$^{14}$.
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.
A new concept for second-harmonic generation (SHG) in an optical nanocircuit is proposed. We demonstrate both theoretically and experimentally that the symmetry of an optical mode alone is sufficient to allow SHG even in centro-symmetric structures m ade of centro-symmetric material. The concept is realized using a plasmonic two-wire transmission-line (TWTL), which simultaneously supports a symmetric and an anti-symmetric mode. We first confirm the generated second-harmonics belong only to the symmetric mode of the TWTL when fundamental excited modes are either purely symmetric or anti-symmetric. We further switch the emission into the anti-symmetric mode when a controlled mixture of the fundamental modes is excited simultaneously. Our results open up a new degree of freedom into the designs of nonlinear optical components, and should pave a new avenue towards multi-functional nanophotonic circuitry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا