ﻻ يوجد ملخص باللغة العربية
A canonical description of a corotating solar wind high speed stream, in terms of velocity profile, would indicate three main regions:a stream interface or corotating interaction region characterized by a rapid flow speed increase and by compressive phenomena due to dynamical interaction between the fast wind flow and the slower ambient plasma;a fast wind plateau characterized by weak compressive phenomena and large amplitude fluctuations with a dominant Alfvenic character;a rarefaction region characterized by a decreasing trend of the flow speed and wind fluctuations dramatically reduced in amplitude and Alfvenic character, followed by the slow ambient wind. Interesting enough, in some cases the region where the severe reduction of these fluctuations takes place is remarkably short in time, of the order of minutes, and located at the flow velocity knee separating the fast wind plateau from the rarefaction region. The aim of this work is to investigate which are the physical mechanisms that might be at the origin of this phenomenon. We firstly looked for the presence of any tangential discontinuity which might inhibit the propagation of Alfvenic fluctuations from fast wind region to rarefaction region. The absence of a clear evidence for the presence of this discontinuity between these two regions led us to proceed with ion composition analysis for the corresponding solar wind, looking for any abrupt variation in minor ions parameters (as tracers of the source region) which might be linked to the phenomenon observed in the wind fluctuations. In the lack of a positive feedback from this analysis, we finally propose a mechanism based on interchange reconnection experienced by the field lines at the base of the corona, within the region separating the open field lines of the coronal hole, source of the fast wind, from the surrounding regions mainly characterized by closed field lines.
We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure fun
This work aims to characterize precisely and systematically the non-thermal characteristics of the electron Velocity Distribution Function (eVDF) in the solar wind at 1 au using data from the Wind spacecraft. We present a comprehensive statistical an
The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% o
Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plas
Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show tha