ﻻ يوجد ملخص باللغة العربية
Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotations) by means of re-processed particle data, from the HELIOS satellites between 0.3 and 1 AU. We have identified 16 intervals of unperturbed high-speed coronal hole plasma, from three different sources and measured at different radial distances. The observations show that, for all three streams, (i) the proton density decreases as expected for a radially expanding plasma, unlike previous analysis that found a slower decrease; (ii) the magnetic field deviates from the Parker prediction, with the radial and tangential components decreasing more slowly and quickly than expected, respectively; (iii) the double-adiabatic invariants are violated and an increase of entropy is observed; (iv) the proton-core temperature anisotropy is constrained by mirror mode instability; (v) the collisional frequency is not constant, but decreases as the plasma travels away from the Sun. The present work provides an insight into the heating problem in pure fast solar wind, fitting in the context of the next solar missions, and, especially for Parker Solar Probe, it enables us to predict the high-speed solar-wind environment much closer to the Sun.
Electron velocity distribution functions in the solar wind according to standard models consist of 4 components, of which 3 are symmetric - the core, the halo, and the superhalo, and one is magnetic field-aligned, beam-like population, referred to as
A canonical description of a corotating solar wind high speed stream, in terms of velocity profile, would indicate three main regions:a stream interface or corotating interaction region characterized by a rapid flow speed increase and by compressive
Magnetic field fluctuations in the solar wind are commonly observed to follow a power law spectrum. Near proton-kinetic scales, a spectral break occurs which is commonly interpreted as a transition to kinetic turbulence. However, this transition is n
Compressive plasma turbulence is investigated at sub-ion scales in the solar wind using both the Fast Plasma Investigation (FPI) instrument on the Magnetospheric MultiScale mission (MMS), as well as using calibrated spacecraft potential data from the
An extensive analysis of Ulysses observations of the solar wind speed V from 1990 to 2008 is undertaken. It is shown that the evolution of V with heliocentric distance r depends substantially on both the heliolatitude and the solar activity cycle. De