ﻻ يوجد ملخص باللغة العربية
A large number of autonomous driving tasks need high-definition stereo images, which requires a large amount of storage space. Efficiently executing lossless compression has become a practical problem. Commonly, it is hard to make accurate probability estimates for each pixel. To tackle this, we propose L3C-Stereo, a multi-scale lossless compression model consisting of two main modules: the warping module and the probability estimation module. The warping module takes advantage of two view feature maps from the same domain to generate a disparity map, which is used to reconstruct the right view so as to improve the confidence of the probability estimate of the right view. The probability estimation module provides pixel-wise logistic mixture distributions for adaptive arithmetic coding. In the experiments, our method outperforms the hand-crafted compression methods and the learning-based method on all three datasets used. Then, we show that a better maximum disparity can lead to a better compression effect. Furthermore, thanks to a compression property of our model, it naturally generates a disparity map of an acceptable quality for the subsequent stereo tasks.
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probabil
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model f
We make the following striking observation: fully convolutional VAE models trained on 32x32 ImageNet can generalize well, not just to 64x64 but also to far larger photographs, with no changes to the model. We use this property, applying fully convolu
We present a novel deep neural network (DNN) architecture for compressing an image when a correlated image is available as side information only at the decoder. This problem is known as distributed source coding (DSC) in information theory. In partic
Lossless image compression is an important technique for image storage and transmission when information loss is not allowed. With the fast development of deep learning techniques, deep neural networks have been used in this field to achieve a higher