ﻻ يوجد ملخص باللغة العربية
We present a novel deep neural network (DNN) architecture for compressing an image when a correlated image is available as side information only at the decoder. This problem is known as distributed source coding (DSC) in information theory. In particular, we consider a pair of stereo images, which generally have high correlation with each other due to overlapping fields of view, and assume that one image of the pair is to be compressed and transmitted, while the other image is available only at the decoder. In the proposed architecture, the encoder maps the input image to a latent space, quantizes the latent representation, and compresses it using entropy coding. The decoder is trained to extract the Wyners common information between the input image and the correlated image from the latter. The received latent representation and the locally generated common information are passed through a decoder network to obtain an enhanced reconstruction of the input image. The common information provides a succinct representation of the relevant information at the receiver. We train and demonstrate the effectiveness of the proposed approach on the KITTI dataset of stereo image pairs. Our results show that the proposed architecture is capable of exploiting the decoder-only side information, and outperforms previous work on stereo image compression with decoder side information.
X-radiography (X-ray imaging) is a widely used imaging technique in art investigation. It can provide information about the condition of a painting as well as insights into an artists techniques and working methods, often revealing hidden information
We describe an end-to-end trainable model for image compression based on variational autoencoders. The model incorporates a hyperprior to effectively capture spatial dependencies in the latent representation. This hyperprior relates to side informati
Single image super-resolution (SISR) is an image processing task which obtains high-resolution (HR) image from a low-resolution (LR) image. Recently, due to the capability in feature extraction, a series of deep learning methods have brought importan
Nowadays, a popular method used for additive watermarking is wide spread spectrum. It consists in adding a spread signal into the host document. This signal is obtained by the sum of a set of carrier vectors, which are modulated by the bits to be emb
We study a variant of the successive refinement problem with receiver side information where the receivers require identical reconstructions. We present general inner and outer bounds for the rate region for this variant and present a single-letter c