ﻻ يوجد ملخص باللغة العربية
Matrix factorizations are among the most important building blocks of scientific computing. State-of-the-art libraries, however, are not communication-optimal, underutilizing current parallel architectures. We present novel algorithms for Cholesky and LU factorizations that utilize an asymptotically communication-optimal 2.5D decomposition. We first establish a theoretical framework for deriving parallel I/O lower bounds for linear algebra kernels, and then utilize its insights to derive Cholesky and LU schedules, both communicating N^3/(P*sqrt(M)) elements per processor, where M is the local memory size. The empirical results match our theoretical analysis: our implementations communicate significantly less than Intel MKL, SLATE, and the asymptotically communication-optimal CANDMC and CAPITAL libraries. Our code outperforms these state-of-the-art libraries in almost all tested scenarios, with matrix sizes ranging from 2,048 to 262,144 on up to 512 CPU nodes of the Piz Daint supercomputer, decreasing the time-to-solution by up to three times. Our code is ScaLAPACK-compatible and available as an open-source library.
Dense linear algebra kernels, such as linear solvers or tensor contractions, are fundamental components of many scientific computing applications. In this work, we present a novel method of deriving parallel I/O lower bounds for this broad family of
We use activity networks (task graphs) to model parallel programs and consider series-parallel extensions of these networks. Our motivation is two-fold: the benefits of series-parallel activity networks and the modelling of programming constructs, su
We propose COSMA: a parallel matrix-matrix multiplication algorithm that is near communication-optimal for all combinations of matrix dimensions, processor counts, and memory sizes. The key idea behind COSMA is to derive an optimal (up to a factor of
We investigate a parallelization strategy for dense matrix factorization (DMF) algorithms, using OpenMP, that departs from the legacy (or conventional) solution, which simply extracts concurrency from a multithreaded version of BLAS. This approach is
Sparse matrix-vector and matrix-matrix multiplication (SpMV and SpMM) are fundamental in both conventional (graph analytics, scientific computing) and emerging (sparse DNN, GNN) domains. Workload-balancing and parallel-reduction are widely-used desig