ﻻ يوجد ملخص باللغة العربية
Dense linear algebra kernels, such as linear solvers or tensor contractions, are fundamental components of many scientific computing applications. In this work, we present a novel method of deriving parallel I/O lower bounds for this broad family of programs. Based on the X-partitioning abstraction, our method explicitly captures inter-statement dependencies. Applying our analysis to LU factorization, we derive COnfLUX, an LU algorithm with the parallel I/O cost of $N^3 / (P sqrt{M})$ communicated elements per processor -- only $1/3times$ over our established lower bound. We evaluate COnfLUX on various problem sizes, demonstrating empirical results that match our theoretical analysis, communicating asymptotically less than Cray ScaLAPACK or SLATE, and outperforming the asymptotically-optimal CANDMC library. Running on $1$,$024$ nodes of Piz Daint, COnfLUX communicates 1.6$times$ less than the second-best implementation and is expected to communicate 2.1$times$ less on a full-scale run on Summit.
Matrix factorizations are among the most important building blocks of scientific computing. State-of-the-art libraries, however, are not communication-optimal, underutilizing current parallel architectures. We present novel algorithms for Cholesky an
We propose two novel techniques for overcoming load-imbalance encountered when implementing so-called look-ahead mechanisms in relevant dense matrix factorizations for the solution of linear systems. Both techniques target the scenario where two thre
Decomposing matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an essential operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L and
Sparse matrix-vector and matrix-matrix multiplication (SpMV and SpMM) are fundamental in both conventional (graph analytics, scientific computing) and emerging (sparse DNN, GNN) domains. Workload-balancing and parallel-reduction are widely-used desig
As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O per