ﻻ يوجد ملخص باللغة العربية
We report the observation of the antisymmetric magnetoresistance (MR) in perpendicular magnetized CoTb films with inhomogeneous magnetization distribution driven by gradient magnetic field. By synchronously charactering the domain pattern evolution during transport measurements, we demonstrate that the nonequilibrium currents in the vicinity of tilting domain walls give rise to such anomalous MR. Moreover, theoretical calculation and analysis reveal that the geometry factor of the multidomain texture plays a dominant role in generating the nonequilibrium current. The explicitly established interplay between the anomalous transport behaviors and the particular domain wall geometry is essential to deepening understanding of the antisymmetric MR, and pave a new way for designing novel domain wall electronic devices.
Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater
We consider long and narrow spin valves composed of a first magnetic layer with a single domain wall (DW), a normal metal spacer and a second magnetic layer that is a planar or a perpendicular polarizer. For these structures, we study numerically DW
We combine magneto-optical imaging and a magnetic field pulse technique to study domain wall dynamics in a ferromagnetic (Ga,Mn)As layer with perpendicular easy axis. Contrary to ultrathin metallic layers, the depinning field is found to be smaller t
We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. Th
We study thermally assisted domain wall generation in perpendicular magnetic anisotropy CoFeB trilayer nanowires by the effect of Joule heating. The anomalous Hall effect is utilized to detect magnetization reversal in order to study the domain wall