ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure-Preserving Deraining with Residue Channel Prior Guidance

74   0   0.0 ( 0 )
 نشر من قبل Qiaosi Yi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Single image deraining is important for many high-level computer vision tasks since the rain streaks can severely degrade the visibility of images, thereby affecting the recognition and analysis of the image. Recently, many CNN-based methods have been proposed for rain removal. Although these methods can remove part of the rain streaks, it is difficult for them to adapt to real-world scenarios and restore high-quality rain-free images with clear and accurate structures. To solve this problem, we propose a Structure-Preserving Deraining Network (SPDNet) with RCP guidance. SPDNet directly generates high-quality rain-free images with clear and accurate structures under the guidance of RCP but does not rely on any rain-generating assumptions. Specifically, we found that the RCP of images contains more accurate structural information than rainy images. Therefore, we introduced it to our deraining network to protect structure information of the rain-free image. Meanwhile, a Wavelet-based Multi-Level Module (WMLM) is proposed as the backbone for learning the background information of rainy images and an Interactive Fusion Module (IFM) is designed to make full use of RCP information. In addition, an iterative guidance strategy is proposed to gradually improve the accuracy of RCP, refining the result in a progressive path. Extensive experimental results on both synthetic and real-world datasets demonstrate that the proposed model achieves new state-of-the-art results. Code: https://github.com/Joyies/SPDNet



قيم البحث

اقرأ أيضاً

Rain is a common natural phenomenon. Taking images in the rain however often results in degraded quality of images, thus compromises the performance of many computer vision systems. Most existing de-rain algorithms use only one single input image and aim to recover a clean image. Few work has exploited stereo images. Moreover, even for single image based monocular deraining, many current methods fail to complete the task satisfactorily because they mostly rely on per pixel loss functions and ignore semantic information. In this paper, we present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information. Specifically, we develop a Semantic-Aware Deraining Module (SADM) which solves both tasks of semantic segmentation and deraining of scenes, and a Semantic-Fusion Network (SFNet) and a View-Fusion Network (VFNet) which fuse semantic information and multi-view information respectively. In addition, we also introduce an Enhanced Paired Rain Removal Network (EPRRNet) which exploits semantic prior to remove rain streaks from stereo images. We first use a coarse deraining network to reduce the rain streaks on the input images, and then adopt a pre-trained semantic segmentation network to extract semantic features from the coarse derained image. Finally, a parallel stereo deraining network fuses semantic and multi-view information to restore finer results. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorpora te semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance.
Recent years have witnessed the significant progress on convolutional neural networks (CNNs) in dynamic scene deblurring. While CNN models are generally learned by the reconstruction loss defined on training data, incorporating suitable image priors as well as regularization terms into the network architecture could boost the deblurring performance. In this work, we propose an Extreme Channel Prior embedded Network (ECPeNet) to plug the extreme channel priors (i.e., priors on dark and bright channels) into a network architecture for effective dynamic scene deblurring. A novel trainable extreme channel prior embedded layer (ECPeL) is developed to aggregate both extreme channel and blurry image representations, and sparse regularization is introduced to regularize the ECPeNet model learning. Furthermore, we present an effective multi-scale network architecture that works in both coarse-to-fine and fine-to-coarse manners for better exploiting information flow across scales. Experimental results on GoPro and Kohler datasets show that our proposed ECPeNet performs favorably against state-of-the-art deep image deblurring methods in terms of both quantitative metrics and visual quality.
While deep learning (DL)-based video deraining methods have achieved significant success recently, they still exist two major drawbacks. Firstly, most of them do not sufficiently model the characteristics of rain layers of rainy videos. In fact, the rain layers exhibit strong physical properties (e.g., direction, scale and thickness) in spatial dimension and natural continuities in temporal dimension, and thus can be generally modelled by the spatial-temporal process in statistics. Secondly, current DL-based methods seriously depend on the labeled synthetic training data, whose rain types are always deviated from those in unlabeled real data. Such gap between synthetic and real data sets leads to poor performance when applying them in real scenarios. Against these issues, this paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer, expecting to better depict its insightful characteristics. Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks, respectively, which both are parameterized as deep neural networks (DNNs). Further more, different prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them. Last but not least, we also design a Monte Carlo EM algorithm to solve this model. Extensive experiments are conducted to verify the superiorities of the proposed semi-supervised deraining model.
Image smoothing is a fundamental procedure in applications of both computer vision and graphics. The required smoothing properties can be different or even contradictive among different tasks. Nevertheless, the inherent smoothing nature of one smooth ing operator is usually fixed and thus cannot meet the various requirements of different applications. In this paper, we first introduce the truncated Huber penalty function which shows strong flexibility under different parameter settings. A generalized framework is then proposed with the introduced truncated Huber penalty function. When combined with its strong flexibility, our framework is able to achieve diverse smoothing natures where contradictive smoothing behaviors can even be achieved. It can also yield the smoothing behavior that can seldom be achieved by previous methods, and superior performance is thus achieved in challenging cases. These together enable our framework capable of a range of applications and able to outperform the state-of-the-art approaches in several tasks, such as image detail enhancement, clip-art compression artifacts removal, guided depth map restoration, image texture removal, etc. In addition, an efficient numerical solution is provided and its convergence is theoretically guaranteed even the optimization framework is non-convex and non-smooth. A simple yet effective approach is further proposed to reduce the computational cost of our method while maintaining its performance. The effectiveness and superior performance of our approach are validated through comprehensive experiments in a range of applications. Our code is available at https://github.com/wliusjtu/Generalized-Smoothing-Framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا