ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Distributionally Robust Optimization for Phase Configuration of RISs

105   0   0.0 ( 0 )
 نشر من قبل Chaouki Ben Issaid
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we study the problem of robust reconfigurable intelligent surface (RIS)-aided downlink communication over heterogeneous RIS types in the supervised learning setting. By modeling downlink communication over heterogeneous RIS designs as different workers that learn how to optimize phase configurations in a distributed manner, we solve this distributed learning problem using a distributionally robust formulation in a communication-efficient manner, while establishing its rate of convergence. By doing so, we ensure that the global model performance of the worst-case worker is close to the performance of other workers. Simulation results show that our proposed algorithm requires fewer communication rounds (about 50% lesser) to achieve the same worst-case distribution test accuracy compared to competitive baselines.



قيم البحث

اقرأ أيضاً

218 - Qi Qi , Zhishuai Guo , Yi Xu 2020
In this paper, we propose a practical online method for solving a distributionally robust optimization (DRO) for deep learning, which has important applications in machine learning for improving the robustness of neural networks. In the literature, m ost methods for solving DRO are based on stochastic primal-dual methods. However, primal-dual methods for deep DRO suffer from several drawbacks: (1) manipulating a high-dimensional dual variable corresponding to the size of data is time expensive; (2) they are not friendly to online learning where data is coming sequentially. To address these issues, we transform the min-max formulation into a minimization formulation and propose a practical duality-free online stochastic method for solving deep DRO with KL divergence regularization. The proposed online stochastic method resembles the practical stochastic Nesterovs method in several perspectives that are widely used for learning deep neural networks. Under a Polyak-Lojasiewicz (PL) condition, we prove that the proposed method can enjoy an optimal sample complexity without any requirements on large batch size. Of independent interest, the proposed method can be also used for solving a family of stochastic compositional problems.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set s, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
We propose and analyze algorithms for distributionally robust optimization of convex losses with conditional value at risk (CVaR) and $chi^2$ divergence uncertainty sets. We prove that our algorithms require a number of gradient evaluations independe nt of training set size and number of parameters, making them suitable for large-scale applications. For $chi^2$ uncertainty sets these are the first such guarantees in the literature, and for CVaR our guarantees scale linearly in the uncertainty level rather than quadratically as in previous work. We also provide lower bounds proving the worst-case optimality of our algorithms for CVaR and a penalized version of the $chi^2$ problem. Our primary technical contributions are novel bounds on the bias of batch robust risk estimation and the variance of a multilevel Monte Carlo gradient estimator due to [Blanchet & Glynn, 2015]. Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distributi on shifts that arise from phenomena such as selection bias or nonstationarity. Existing algorithms for solving Wasserstein DRSL -- one of the most popular DRSL frameworks based around robustness to perturbations in the Wasserstein distance -- involve solving complex subproblems or fail to make use of stochastic gradients, limiting their use in large-scale machine learning problems. We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable stochastic extra-gradient algorithms which provably achieve faster convergence rates than existing approaches. We demonstrate their effectiveness on synthetic and real data when compared to existing DRSL approaches. Key to our results is the use of variance reduction and random reshuffling to accelerate stochastic min-max optimization, the analysis of which may be of independent interest.
238 - Chaosheng Dong , Bo Zeng 2020
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe rformance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا