ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a practical online method for solving a distributionally robust optimization (DRO) for deep learning, which has important applications in machine learning for improving the robustness of neural networks. In the literature, most methods for solving DRO are based on stochastic primal-dual methods. However, primal-dual methods for deep DRO suffer from several drawbacks: (1) manipulating a high-dimensional dual variable corresponding to the size of data is time expensive; (2) they are not friendly to online learning where data is coming sequentially. To address these issues, we transform the min-max formulation into a minimization formulation and propose a practical duality-free online stochastic method for solving deep DRO with KL divergence regularization. The proposed online stochastic method resembles the practical stochastic Nesterovs method in several perspectives that are widely used for learning deep neural networks. Under a Polyak-Lojasiewicz (PL) condition, we prove that the proposed method can enjoy an optimal sample complexity without any requirements on large batch size. Of independent interest, the proposed method can be also used for solving a family of stochastic compositional problems.
In this article, we study the problem of robust reconfigurable intelligent surface (RIS)-aided downlink communication over heterogeneous RIS types in the supervised learning setting. By modeling downlink communication over heterogeneous RIS designs a
Limiting failures of machine learning systems is vital for safety-critical applications. In order to improve the robustness of machine learning systems, Distributionally Robust Optimization (DRO) has been proposed as a generalization of Empirical Ris
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set
We propose and analyze algorithms for distributionally robust optimization of convex losses with conditional value at risk (CVaR) and $chi^2$ divergence uncertainty sets. We prove that our algorithms require a number of gradient evaluations independe
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distributi