ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental test of quantum causal influences

120   0   0.0 ( 0 )
 نشر من قبل Fabio Sciarrino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since Bells theorem, it is known that the concept of local realism fails to explain quantum phenomena. Indeed, the violation of a Bell inequality has become a synonym of the incompatibility of quantum theory with our classical notion of cause and effect. As recently discovered, however, the instrumental scenario -- a tool of central importance in causal inference -- allows for signatures of nonclassicality that do not hinge on this paradigm. If, instead of relying on observational data only, we can also intervene in our experimental setup, quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible. That is, through interventions, we can witness the quantum behaviour of a system that would look classical otherwise. Using a photonic setup -- faithfully implementing the instrumental causal structure and allowing to switch between the observational and interventional modes in a run to run basis -- we experimentally observe this new witness of nonclassicality for the first time. In parallel, we also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modelling.



قيم البحث

اقرأ أيضاً

Quantum mechanics challenges our intuition on the cause-effect relations in nature. Some fundamental concepts, including Reichenbachs common cause principle or the notion of local realism, have to be reconsidered. Traditionally, this is witnessed by the violation of a Bell inequality. But are Bell inequalities the only signature of the incompatibility between quantum correlations and causality theory? Motivated by this question we introduce a general framework able to estimate causal influences between two variables, without the need of interventions and irrespectively of the classical, quantum, or even post-quantum nature of a common cause. In particular, by considering the simplest instrumental scenario -- for which violation of Bell inequalities is not possible -- we show that every pure bipartite entangled state violates the classical bounds on causal influence, thus answering in negative to the posed question and opening a new venue to explore the role of causality within quantum theory.
We present the first experimental test that distinguishes between an event-based corpuscular model (EBCM) [H. De Raedt et al.: J. Comput. Theor. Nanosci. 8 (2011) 1052] of the interaction of photons with matter and quantum mechanics. The test looks a t the interference that results as a single photon passes through a Mach-Zehnder interferometer [H. De Raedt et al.: J. Phys. Soc. Jpn. 74 (2005) 16]. The experimental results, obtained with a low-noise single-photon source [G. Brida et al.: Opt. Expr. 19 (2011) 1484], agree with the predictions of standard quantum mechanics with a reduced $chi^2$ of 0.98 and falsify the EBCM with a reduced $chi^2$ of greater than 20.
The experimental violation of Bell inequalities using spacelike separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, any such experimental violation could always be e xplained in principle through models based on hidden influences propagating at a finite speed v>c, provided v is large enough. Here, we show that for any finite speed v with c<v<infinity, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication does not require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Hence, assuming the impossibility of using nonlocal correlations for superluminal communication, we exclude any possible explanation of quantum correlations in terms of influences propagating at any finite speed. Our result uncovers a new aspect of the complex relationship between multipartite quantum nonlocality and the impossibility of signalling.
We introduce a protocol addressing the conformance test problem, which consists in determining whether a process under test conforms to a reference one. We consider a process to be characterized by the set of end-product it produces, which is generat ed according to a given probability distribution. We formulate the problem in the context of hypothesis testing and consider the specific case in which the objects can be modeled as pure loss channels. We demonstrate theoretically that a simple quantum strategy, using readily available resources and measurement schemes in the form of two-mode squeezed vacuum and photon-counting, can outperform any classical strategy. We experimentally implement this protocol, exploiting optical twin beams, validating our theoretical results, and demonstrating that, in this task, there is a quantum advantage in a realistic setting.
The paper reports on experimental diagnostics of entanglement swapping protocol by means of collective entanglement witness. Our approach is suitable to detect disturbances occurring in the preparation of quantum states, quantum communication channel and imperfect Bell-state projection. More specifically we demonstrate that our method can distinguish disturbances such as depolarization, phase-damping, amplitude-damping and imperfect Bell-state measurement by observing four probabilities and estimating collective entanglement witness. Since entanglement swapping is a key procedure for quantum repeaters, quantum relays, device-independent quantum communications or entanglement assisted error correction, this can aid in faster and practical resolution of quality-of-transmission related problems as our approach requires less measurements then other means of diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا