ﻻ يوجد ملخص باللغة العربية
We present the first experimental test that distinguishes between an event-based corpuscular model (EBCM) [H. De Raedt et al.: J. Comput. Theor. Nanosci. 8 (2011) 1052] of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a Mach-Zehnder interferometer [H. De Raedt et al.: J. Phys. Soc. Jpn. 74 (2005) 16]. The experimental results, obtained with a low-noise single-photon source [G. Brida et al.: Opt. Expr. 19 (2011) 1484], agree with the predictions of standard quantum mechanics with a reduced $chi^2$ of 0.98 and falsify the EBCM with a reduced $chi^2$ of greater than 20.
We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable $x$, for each passage of a particle through the
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems agains
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for some realistic models with hidden variables. There are, however, two powerful theorems against t
We propose a Partial Lorentz Transformation (PLT) test for detecting entanglement in a two qubit system. One can expand the density matrix of a two qubit system in terms of a tensor product of $(mathbb{I}, vec{sigma})$. The matrix $A$ of the coeffici
The ontological aspect of Bohmian mechanics, as a hidden-variable theory that provides us with an objective description of a quantum world without observers, is widely known. Yet its practicality is getting more and more acceptance and relevance, for