ﻻ يوجد ملخص باللغة العربية
ABSTRACT: Narrow-gap semiconductors are sought-after materials due to their potential for long-wavelength detectors, thermoelectrics, and more recently non-trivial topology. Here we report the synthesis and characterization of a new family of narrow-gap semiconductors, $R$$_{3}$Cd$_{2}$As$_{6}$ ($R=$ La, Ce). Single crystal x-ray diffraction at room temperature reveals that the As square nets distort and Cd vacancies order in a monoclinic superstructure. A putative charge-density ordered state sets in at 279~K in La$_{3}$Cd$_{2}$As$_{6}$ and at 136~K in Ce$_{3}$Cd$_{2}$As$_{6}$ and is accompanied by a substantial increase in the electrical resistivity in both compounds. The resistivity of the La member increases by thirteen orders of magnitude on cooling, which points to a remarkably clean semiconducting ground state. Our results suggest that light square net materials within a $I4/mmm$ parent structure are promising clean narrow-gap semiconductors.
We present an extension and revision of the spectroscopic and structural data of the mixed stack charge transfer (CT) crystal 3,3$^prime$,5,5$^prime$-tetramethylbenzidine--tetrafluoro-tetracyanoquinodimethane (TMB-TCNQF$_4$), associated with new elec
Here we investigate the thermodynamic and electronic properties of Eu$_{11}$InSb$_9$ single crystals. Electrical transport data show that Eu$_{11}$InSb$_9$ has a semiconducting ground state with a relatively narrow band gap of $320$~meV. Magnetic sus
We have investigated the effects of structure change and electron correlation on SrTiO$_{3}$ single crystals using angle-resolved photoemission spectroscopy. We show that the cubic to tetragonal phase transition at 105$^circ$K is manifested by a char
New carbon forms exhibiting extraordinary physico-chemical properties can be generated from nanostructured precursors under extreme pressure. Nevertheless, synthesis of such fascinating materials is often not well understood that results, as is the c
The delicate balance between spin-orbit coupling, Coulomb repulsion and crystalline electric field interactions observed in Ir-based oxides is usually manifested as exotic magnetic behavior. Here we investigate the evolution of the exchange coupling