ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Correlation Effects in Semiconducting SrTiO$_{3}$

158   0   0.0 ( 0 )
 نشر من قبل Young Jun Chang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the effects of structure change and electron correlation on SrTiO$_{3}$ single crystals using angle-resolved photoemission spectroscopy. We show that the cubic to tetragonal phase transition at 105$^circ$K is manifested by a charge transfer from in-plane ($d_{yz}$ and $d_{zx}$) bands to out-of-plane ($d_{xy}$) band, which is opposite to the theoretical predictions. Along this second-order phase transition, we find a smooth evolution of the quasiparticle strength and effective masses. The in-plane band exhibits a peak-dip-hump lineshape, indicating a high degree of correlation on a relatively large (170 meV) energy scale, which is attributed to the polaron formation.



قيم البحث

اقرأ أيضاً

By combined top- and backgating, we explore the correlation of superconductivity with band filling and electron confinement at the LaAlO$_3$-SrTiO$_3$ interface. We find that the top- and backgate voltages have distinctly different effects on the sup erconducting critical temperature, implying that the confining potential well has a profound effect on superconductivity. We investigate the origin of this behavior by comparing the gate-dependence of $T_c$ to the corresponding evolution of the band filling with gate voltage. For several backgate voltages, we observe maximum $T_c$ to consistently coincide with a kink in tuning the band filling for high topgate voltage. Self-consistent Schrodinger-Poisson calculations relate this kink to a Lifshitz transition of the second $d_{xy}$ subband. These results establish a major role for confinement-induced subbands in the phase diagram of SrTiO$_3$ surface states, and establish gating as a means to control the relative energy of these states.
The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, t he comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. The inclusion of a Hubbard-like contribution on the Mn d states, according to the so-called LSDA+U approach, is rather ineffective from the structural point of view, but much more important from the electronic and magnetic point of view. In particular, full half-metallicity, which is missed within a bare density-functional approach, is recovered within LSDA+U, in agreement with experiments. Moreover, the half-metallic behavior, particularly relevant for spin-injection purposes, is independent on the chosen substrate and is achieved for all the considered in-plane lattice constants. More generally, strain effects are not seen to crucially affect the electronic structure: within the considered tetragonalization range, the minority gap is only slightly (i.e. by about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we show that the growth on a smaller in-plane lattice constant can stabilize the out-of-plane vs in-plane e_g orbital and significatively change their relative occupancy. Since e_g orbitals are key quantities for the double-exchange mechanism, strain effects are confirmed to be crucial for the resulting magnetic coupling.
A magnetic field parallel to an electrical current does not produce a Lorentz force on the charge carriers. Therefore, orbital longitudinal magnetoresistance is unexpected. Here we report on the observation of a large and non saturating magnetoresist ance in lightly doped SrTiO$_{3-x}$ independent of the relative orientation of current and magnetic field. We show that this quasi-isotropic magnetoresistance can be explained if the carrier mobility along all orientations smoothly decreases with magnetic field. This anomalous regime is restricted to low concentrations when the dipolar correlation length is longer than the distance between carriers. We identify cyclotron motion of electrons in a potential landscape tailored by polar domains as the cradle of quasi-isotropic orbital magnetoresistance. The result emerges as a challenge to theory and may be a generic feature of lightly-doped quantum paralectric materials.
Using a combination of vertical transport measurements across and lateral transport measurements along the LaAlO$_{3}$/SrTiO$_{3}$ heterointerface, we demonstrate that significant potential barrier lowering and band bending are the cause of interfaci al metallicity. Barrier lowering and enhanced band bending extends over 2.5 nm into LaAlO$_{3}$ as well as SrTiO$_{3}$. We explain origins of high-temperature carrier saturation, lower carrier concentration, and higher mobility in the sample with the thinnest LaAlO$_{3}$ film on a SrTiO$_{3}$ substrate. Lateral transport results suggest that parasitic interface scattering centers limit the low-temperature lateral electron mobility of the metallic channel.
We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-atomic magnetization. The LDA+U method is used and its equivalence to dynami cal mean-field theory in the static limit is derived. The effects of strong correlations are studied along several paths in $(U,J)$ parameter space. Both experimental magnitude of MAE and direction of magnetization are predicted correctly near $U=1.9 eV$, $J=1.2 eV$ for Ni and $U=1.2 eV$, $J=0.8 eV$ for Fe. The modified one-electron spectra by strong correlations are emphasized in conjunction with magnetic anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا