ﻻ يوجد ملخص باللغة العربية
Fast charging of lithium-ion batteries is crucial to increase desirability for consumers and hence accelerate the adoption of electric vehicles. A major barrier to shorter charge times is the accelerated aging of the battery at higher charging rates, which can be driven by lithium plating, increased solid electrolyte interphase growth due to elevated temperatures, and particle cracking due to mechanical stress. Lithium plating depends on the overpotential of the negative electrode, and mechanical stress depends on the concentration gradient, both of which cannot be measured directly. Techniques based on physics-based models of the battery and optimal control algorithms have been developed to this end. While these methods show promise in reducing degradation, their optimization algorithms complexity can limit their implementation. In this paper, we present a method based on the constant current constant voltage (CC-CV) charging scheme, called CC-CV$eta sigma$T (VEST). The new approach is simpler to implement and can be used with any model to impose varying levels of constraints on variables pertinent to degradation, such as plating potential and mechanical stress. We demonstrate the new CC-CV$eta sigma$T charging using an electrochemical model with mechanical and thermal effects included. Furthermore, we discuss how uncertainties can be accounted for by considering safety margins for the plating and stress constraints.
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-ti
The rapidly growing use of lithium-ion batteries across various industries highlights the pressing issue of optimal charging control, as charging plays a crucial role in the health, safety and life of batteries. The literature increasingly adopts mod
This contribution presents a diagnosis scheme for batteries to detect and isolate internal faults in the form of small parameter changes. This scheme is based on an electrochemical reduced-order model of the battery, which allows the inclusion of phy
Internal short circuits are a leading cause of battery thermal runaway, and hence a major safety issue for electric vehicles. An internal short circuit with low resistance is called a hard internal short, which causes a high internal current flow tha
Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of $N$ QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) q