ﻻ يوجد ملخص باللغة العربية
Internal short circuits are a leading cause of battery thermal runaway, and hence a major safety issue for electric vehicles. An internal short circuit with low resistance is called a hard internal short, which causes a high internal current flow that leads to an extremely fast temperature rise, gas generation, cell swelling, and ultimately battery rupture and failure. Thus it is crucial to detect these faults immediately after they get triggered. In large battery packs with many cells in parallel, detecting an internal short circuit event using voltage is difficult due to suppression of the voltage signal from the faulty cell by the other healthy cells connected in parallel. In contrast, analyzing the gas composition in the pack enclosure can provide a robust single cell failure detection method. At elevated temperature, decomposition of the battery materials results in gas generation and cell swelling. The cell structure is designed to rupture at a critical gas pressure and vent the accumulated $CO_2$ gas, in order to prevent explosive forces. In this paper, we extend our previous work by combining the models of cell thermal dynamics, swelling, and $CO_2$ gas generation. In particular, we developed a fast and high confidence level detection method of hard internal short circuit events for a battery pack by measuring cell expansion force and monitoring $CO_2$ concentrations in a pack enclosure.
This paper addresses the use of data-driven evolving techniques applied to fault prognostics. In such problems, accurate predictions of multiple steps ahead are essential for the Remaining Useful Life (RUL) estimation of a given asset. The fault prog
Faults in photovoltaic (PV) systems can seriously affect the efficiency, energy yield as well as the security of the entire PV plant, if not detected and corrected quickly. Therefore, fault diagnosis of PV arrays is indispensable for improving the re
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical syst
This paper considers the problem of fault detection and localization in active distribution networks using PMUs. The proposed algorithm consists in computing a set of weighted least squares state estimates whose results are used to detect, characteri
The complex nature of lithium-ion battery degradation has led to many machine learning based approaches to health forecasting being proposed in literature. However, machine learning can be computationally intensive. Linear approaches are faster but h