ترغب بنشر مسار تعليمي؟ اضغط هنا

Characteristic interaction potential of black hole molecules from the microscopic interpretation of Ruppeiner geometry

81   0   0.0 ( 0 )
 نشر من قبل Shao-Wen Wei
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ruppeiner geometry has been found to be a novel promising approach to uncover the microstructure of fluid systems and black holes. In this work, combining with the micro model of the Van der Waals fluid, we shall propose a first microscopic interpretation for the empirical observation of Ruppeiner geometry. Then employing the microscopic interpretation, we disclose the potential microstructure for the anti-de Sitter black hole systems. Of particular interest, we obtain the microscopic interaction potentials for the underlying black hole molecules. This significantly strengthens the study towards to the black hole nature from the viewpoint of the thermodynamics.



قيم البحث

اقرأ أيضاً

86 - Chao Wang , Bin Wu , Zhen-Ming Xu 2021
The connection between the shadow radius and the Ruppeiner geometry of a charged static spherically symmetric black hole is investigated. The normalized curvature scalar is adopted, and its close relation to the Van der Waals-like and Hawking-Page ph ase transition of Reissner-Nordstr{o}m AdS black hole is studied. The results show that the shadow radius is a useful tool to reveal the correct information of the phase structure and the underlying microstructure of the black hole, which opens a new window to investigate the strong gravity system from the observational point of view.
218 - Shao-Wen Wei , Yu-Xiao Liu 2021
Ruppeiner geometry has been successfully applied in the study of the black hole microstructure by combining with the small-large black hole phase transition. In this paper, we will extend the study to the triple point, where three black hole phases c oexist. For the six-dimensional charged Gauss-Bonnet anti-de Sitter black hole, we thoroughly investigate the swallow tail behaviors of the Gibbs free energy and the equal area laws. After obtaining the black hole triple point, we exhibit its phase structures both in pressure-temperature and temperature-horizon radius diagrams. Quite different from the liquid-vapor phase transition, a double peak behavior is present in the temperature-horizon radius phase diagram. Then we construct the Ruppeiner geometry and calculate the corresponding normalized curvature scalar. Near the triple point, we observe multiple negatively divergent behaviors. Positive curvature scalar is observed for the small black hole with high temperature, which indicates that the repulsive interaction dominates among the microstructure. Furthermore, we consider the variation of the curvature scalar along the coexisting intermediate and large black hole curves. Combining with the observation for different fluids, the result suggests that this black hole system behaves more like the argon or methane. Our study provides a first and preliminary step towards understanding black hole microstructure near the triple point, as well as uncovering the particular properties of the Gauss-Bonnet gravity.
In this paper we systematically study a model of spherically symmetric polymer black holes recently proposed by Gambini, Olmedo, and Pullin (GOP). Within the framework of loop quantum gravity, the quantum parameters in the GOP model depend on the min imal area gap and the size of the discretization of the physical states. In this model, a spacelike transition surface takes place of the classical singularity. By means of coordinate transformations, we first extend the metric to the white hole region, and find that the geometric structure of the quantum black hole is similar to the wormhole structure, and the radius of the most quantum region is equal to the wormhole radius. In addition, we show that the energy conditions are violated not only at throat, but also at horizons and the spatial infinities. In order to show how the quantum effects affect the spacetimes, we calculate the Ricci and Kretschmann scalars at different places. It turns out that, as expected, the most quantum region is at the throat. Finally, we consider the quasinormal modes (QNMs) of massless scalar field perturbations, electromagnetic field perturbations, and axial gravitational perturbations. QNMs in the Eikonal limits are also considered. As anticipated, the spectrum of QNMs deviates from that of the classical case due to quantum effects. Interestingly, our results show that the quasinormal frequencies of the perturbations share the same qualitative tendency while setting quantum parameters with various values in this effective model, even if the potential deviations are different with different spins.
We argue that the equations of motion of quantum field theories in curved backgrounds encode new fundamental black hole thermodynamic relations. We define new entropy variation relations. These `emerge through the monodromies that capture the infinit esimal changes in the black hole background produced by the field excitations. This raises the possibility of new thermodynamic relations defined as independent sums involving entropies, temperatures and angular velocities defined at every black hole horizon. We present explicit results for the sum of all horizon entropy variations for general rotating black holes, both in asymptotically at and asymptotically anti-de Sitter spacetimes in four and higher dimensions. The expressions are universal, and in most cases add up to zero. We also find that these thermodynamic summation relations apply in theories involving multi-charge black holes.
We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction elements which are carrried by the corrected entropy. Then we put an entropy modified by quantum tunneling into the way, from which we get a new generalized uncertainty principle, and finally find the new one has a broader form and a stronger adaptability to the sign of parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا