ﻻ يوجد ملخص باللغة العربية
We argue that the equations of motion of quantum field theories in curved backgrounds encode new fundamental black hole thermodynamic relations. We define new entropy variation relations. These `emerge through the monodromies that capture the infinitesimal changes in the black hole background produced by the field excitations. This raises the possibility of new thermodynamic relations defined as independent sums involving entropies, temperatures and angular velocities defined at every black hole horizon. We present explicit results for the sum of all horizon entropy variations for general rotating black holes, both in asymptotically at and asymptotically anti-de Sitter spacetimes in four and higher dimensions. The expressions are universal, and in most cases add up to zero. We also find that these thermodynamic summation relations apply in theories involving multi-charge black holes.
We investigate the relationship between shadow radius and microstructure for a general static spherically symmetric black hole and confirm their close connection. In this regard, we take the Reissner-Nordstrom (AdS) black hole as an example to do the
In this work we derive a generalized Newtonian gravitational force and show that it can account for the anomalous galactic rotation curves. We derive the entropy-area relationship applying the Feynman-Hibbs procedure to the supersymmetric Wheeler-DeW
In this paper, we have applied the Lorentz-invariance-violation (LIV) class of dispersion relations (DR) with the dimensionless parameter n = 2 and the sign of LIV {eta}_+ = 1, to phenomenologically study the effect of quantum gravity in the strong g
We consider whether the new horizon-first law works in higher-dimensional $f(R)$ theory. We firstly obtain the general formulas to calculate the entropy and the energy of a general spherically-symmetric black hole in $D$-dimensional $f(R)$ theory. Fo
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent fu