ﻻ يوجد ملخص باللغة العربية
The importance of many-body effects on electronic and magnetic properties and stability of different structural phases was studied in novel iron oxide - Fe$_2$O. It was found that while Hubbard repulsion hardly affects the electronic spectrum of this material ($m^*/m sim 1.2$), but it strongly changes its phase diagram shifting critical pressures of structural transitions to much lower values. Moreover, one of the previously obtained in the density functional theory (DFT) structures (P$bar 3$m1) becomes energetically unstable if many-body effects are taken into consideration. It is shown that this is an account of magnetic moment fluctuations in the DFT+DMFT approach, which strongly contributes to modification of the phase diagram of Fe$_2$O.
We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-princi
We present the results of structural and magnetic phase comparisons of the iron oxychalcogenides La$_{2}$O$_{2}$Fe$_{2}$O$M$$_{2}$ ($M$ = S, Se). Elastic neutron scattering reveals that $M$ = S and Se have similar nuclear structures at room and low t
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas
We investigate the structural and magnetic properties of the new quantum magnet BaCuTe$_2$O$_6$. This compound is synthesized for the first time in powder and single crystal form. Synchrotron X-ray and neutron diffraction reveal a cubic crystal struc
SrTiO$_3$ is a model perovskite compound with unique properties and technological relevance. At 105 K it undergoes a transition from a cubic to a tetragonal phase with characteristic antiferrodistortive rotations of the TiO$_6$ octahedra. Here we stu