ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of the many-body effects for structural properties of the novel iron oxide: Fe$_2$O

65   0   0.0 ( 0 )
 نشر من قبل Alexey Shorikov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The importance of many-body effects on electronic and magnetic properties and stability of different structural phases was studied in novel iron oxide - Fe$_2$O. It was found that while Hubbard repulsion hardly affects the electronic spectrum of this material ($m^*/m sim 1.2$), but it strongly changes its phase diagram shifting critical pressures of structural transitions to much lower values. Moreover, one of the previously obtained in the density functional theory (DFT) structures (P$bar 3$m1) becomes energetically unstable if many-body effects are taken into consideration. It is shown that this is an account of magnetic moment fluctuations in the DFT+DMFT approach, which strongly contributes to modification of the phase diagram of Fe$_2$O.



قيم البحث

اقرأ أيضاً

We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-princi ples calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hunds exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hunds coupling reduces, by a factor of five, the strong imbalance in the binding energies of heme with CO and O_2 ligands.
We present the results of structural and magnetic phase comparisons of the iron oxychalcogenides La$_{2}$O$_{2}$Fe$_{2}$O$M$$_{2}$ ($M$ = S, Se). Elastic neutron scattering reveals that $M$ = S and Se have similar nuclear structures at room and low t emperatures. We find that both materials obtain antiferromagnetic ordering at a Neel temperature $T_{N}$ 90.1 $pm$ 0.16 K and 107.2 $pm$ 0.06 K for $M$= Se and S, respectively. The magnetic arrangements of $M$ = S, Se are obtained through Rietveld refinement. We find the order parameter exponent $beta$ to be 0.129 $pm$ 0.006 for $M$ = Se and 0.133 $pm$ 0.007 for $M$ = S. Each of these values is near the Ising symmetry value of 1/8. This suggests that although lattice and electronic structural modifications result from chalcogen exchange, the nature of the magnetic interactions is similar in these materials.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas ic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
We investigate the structural and magnetic properties of the new quantum magnet BaCuTe$_2$O$_6$. This compound is synthesized for the first time in powder and single crystal form. Synchrotron X-ray and neutron diffraction reveal a cubic crystal struc ture (P4$_1$32) where the magnetic Cu$^{2+}$ ions form a complex network. Physical properties measurements suggest the presence of antiferromagnetic interactions with a Curie-Weiss temperature of -33K, while long-range magnetic order occurs at the much lower temperature of ~6.3K. The magnetic structure, solved using neutron diffraction, reveals antiferromagnetic order along chains parallel to the a, b and c crystal axes. This is consistent with the magnetic excitations which resemble the multispinon continuum typical of the spin-1/2 Heisenberg antiferromagnetic chain. A consistent intrachain interaction value of ~34K is achieved from the various techniques. Finally the magnetic structure provides evidence that the chains are coupled together in a non-colinear arrangement by a much weaker antiferromagnetic, frustrated hyperkagome interaction.
SrTiO$_3$ is a model perovskite compound with unique properties and technological relevance. At 105 K it undergoes a transition from a cubic to a tetragonal phase with characteristic antiferrodistortive rotations of the TiO$_6$ octahedra. Here we stu dy systematically the effect of different exchange correlation functionals on the structural, electronic and optical properties of cubic and tetragonal STO by comparing the recently implemented strongly constrained and appropriately normed (SCAN) meta-GGA functional with the generalized gradient approximation (PBE96 and PBEsol) and the hybrid functional (HSE06). SCAN is found to significantly improve the description of the structural properties, in particular the rotational angle of the tetragonal phase, comparable to HSE06 at a computational cost similar to GGA. The addition of a Hubbard $U$-term (SCAN+$U$, $U=7.45$ eV) allows to achieve the experimental band gap of 3.25 eV with a moderate increase in the lattice constant, whereas within GGA+$U$ the gap is underestimated even for high $U$ values. The effect of the exchange-correlation functional on the optical properties is progressively reduced from 1.5 eV variance in the onset of the spectrum in the independent particle picture to 0.3 eV upon inclusion of many-body effects within the framework of the $GW$ approximation (single-shot $G_0W_0$) and excitonic corrections by solving the Bethe-Salpeter equation (BSE). Moreover, a model BSE approach is shown to reproduce the main features of the optical spectrum at a lower cost compared to $G_0W_0$+BSE. Strong excitonic effects are found in agreement with previous results and their origin is analyzed based on the contributing interband transitions. Last but not least, the effect of the tetragonal distortion on the optical spectrum is discussed and compared to available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا