ﻻ يوجد ملخص باللغة العربية
We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hunds exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hunds coupling reduces, by a factor of five, the strong imbalance in the binding energies of heme with CO and O_2 ligands.
We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently availab
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas
The importance of many-body effects on electronic and magnetic properties and stability of different structural phases was studied in novel iron oxide - Fe$_2$O. It was found that while Hubbard repulsion hardly affects the electronic spectrum of this
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals d
Including on-site electronic interactions described by the multi-orbital Hubbard model we study the correlation effects in the electronic structure of bulk palladium. We use a combined density functional and dynamical mean field theory, LDA+DMFT, bas