ترغب بنشر مسار تعليمي؟ اضغط هنا

On boosting the power of Chatterjees rank correlation

115   0   0.0 ( 0 )
 نشر من قبل Fang Han
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Chatterjee (2021)s ingenious approach to estimating a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the unusual property of being between 0 and 1, and being 0 or 1 if and only if the corresponding pair of random variables is independent or one is a measurable function of the other almost surely. However, more recent studies (Cao and Bickel, 2020; Shi et al., 2021b) showed that independence tests based on Chatterjees rank correlation are unfortunately rate-inefficient against various local alternatives and they call for variants. We answer this call by proposing revised Chatterjees rank correlations that still consistently estimate the same dependence measure but provably achieve near-parametric efficiency in testing against Gaussian rotation alternatives. This is possible via incorporating many right nearest neighbors in constructing the correlation coefficients. We thus overcome the only one disadvantage of Chatterjees rank correlation (Chatterjee, 2021, Section 7).



قيم البحث

اقرأ أيضاً

147 - Hongjian Shi , Mathias Drton , 2020
Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much recent attention. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zer o if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjees new correlation coefficient to three established rank correlations that also facilitate consistent tests of independence, namely, Hoeffdings $D$, Blum-Kiefer-Rosenblatts $R$, and Bergsma-Dassios-Yanagimotos $tau^*$. We contrast their computational efficiency in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjees coefficient is unfortunately rate sub-optimal compared to $D$, $R$, and $tau^*$. The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favor $D$, $R$, and $tau^*$ over Chatterjees new correlation coefficient for the purpose of testing independence.
In this paper, we provide a negative answer to a long-standing open problem on the compatibility of Spearmans rho matrices. Following an equivalence of Spearmans rho matrices and linear correlation matrices for dimensions up to 9 in the literature, w e show non-equivalence for dimensions 12 or higher. In particular, we connect this problem with the existence of a random vector under some linear projection restrictions in two characterization results.
89 - Wenjia Wang , Yi-Hui Zhou 2020
In the multivariate regression, also referred to as multi-task learning in machine learning, the goal is to recover a vector-valued function based on noisy observations. The vector-valued function is often assumed to be of low rank. Although the mult ivariate linear regression is extensively studied in the literature, a theoretical study on the multivariate nonlinear regression is lacking. In this paper, we study reduced rank multivariate kernel ridge regression, proposed by cite{mukherjee2011reduced}. We prove the consistency of the function predictor and provide the convergence rate. An algorithm based on nuclear norm relaxation is proposed. A few numerical examples are presented to show the smaller mean squared prediction error comparing with the elementwise univariate kernel ridge regression.
Distance correlation has become an increasingly popular tool for detecting the nonlinear dependence between a pair of potentially high-dimensional random vectors. Most existing works have explored its asymptotic distributions under the null hypothesi s of independence between the two random vectors when only the sample size or the dimensionality diverges. Yet its asymptotic null distribution for the more realistic setting when both sample size and dimensionality diverge in the full range remains largely underdeveloped. In this paper, we fill such a gap and develop central limit theorems and associated rates of convergence for a rescaled test statistic based on the bias-corrected distance correlation in high dimensions under some mild regularity conditions and the null hypothesis. Our new theoretical results reveal an interesting phenomenon of blessing of dimensionality for high-dimensional distance correlation inference in the sense that the accuracy of normal approximation can increase with dimensionality. Moreover, we provide a general theory on the power analysis under the alternative hypothesis of dependence, and further justify the capability of the rescaled distance correlation in capturing the pure nonlinear dependency under moderately high dimensionality for a certain type of alternative hypothesis. The theoretical results and finite-sample performance of the rescaled statistic are illustrated with several simulation examples and a blockchain application.
Sequential data with serial correlation and an unknown, unstructured, and dynamic background is ubiquitous in neuroscience, psychology, and econometrics. Inferring serial correlation for such data is a fundamental challenge in statistics. We propose a total variation constrained least square estimator coupled with hypothesis tests to infer the serial correlation in the presence of unknown and unstructured dynamic background. The total variation constraint on the dynamic background encourages a piece-wise constant structure, which can approximate a wide range of dynamic backgrounds. The tuning parameter is selected via the Ljung-Box test to control the bias-variance trade-off. We establish a non-asymptotic upper bound for the estimation error through variational inequalities. We also derive a lower error bound via Fanos method and show the proposed method is near-optimal. Numerical simulation and a real study in psychology demonstrate the excellent performance of our proposed method compared with the state-of-the-art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا