ﻻ يوجد ملخص باللغة العربية
Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much recent attention. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjees new correlation coefficient to three established rank correlations that also facilitate consistent tests of independence, namely, Hoeffdings $D$, Blum-Kiefer-Rosenblatts $R$, and Bergsma-Dassios-Yanagimotos $tau^*$. We contrast their computational efficiency in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjees coefficient is unfortunately rate sub-optimal compared to $D$, $R$, and $tau^*$. The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favor $D$, $R$, and $tau^*$ over Chatterjees new correlation coefficient for the purpose of testing independence.
Chatterjee (2021)s ingenious approach to estimating a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the unusual property of being between 0 and
In this paper we propose a class of weighted rank correlation coefficients extending the Spearmans rho. The proposed class constructed by giving suitable weights to the distance between two sets of ranks to place more emphasis on items having low ran
Consider a Gaussian vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively, where both $p$ and $q$ are proportional to the sample size $n$. Denote by $Sigma_{mathbf
We provide sufficient conditions for the asymptotic normality of the generalized correlation coefficient $sum a_{ij}b_{ij}$ under the permutation null distribution when $a_{ij}$s are symmetric and $b_{ij}$s are symmetric.
Rank correlations have found many innovative applications in the last decade. In particular, suitable rank correlations have been used for consistent tests of independence between pairs of random variables. Using ranks is especially appealing for con