ﻻ يوجد ملخص باللغة العربية
We motivate and propose a suite of simple but effective improvements for concept-to-text generation called SAPPHIRE: Set Augmentation and Post-hoc PHrase Infilling and REcombination. We demonstrate their effectiveness on generative commonsense reasoning, a.k.a. the CommonGen task, through experiments using both BART and T5 models. Through extensive automatic and human evaluation, we show that SAPPHIRE noticeably improves model performance. An in-depth qualitative analysis illustrates that SAPPHIRE effectively addresses many issues of the baseline model generations, including lack of commonsense, insufficient specificity, and poor fluency.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been pr
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., word choices, sentence structures). More traditional systems use templates to determine th
Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-to-graph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two f
Prior studies on text-to-text generation typically assume that the model could figure out what to attend to in the input and what to include in the output via seq2seq learning, with only the parallel training data and no additional guidance. However,
Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information