ﻻ يوجد ملخص باللغة العربية
Prior studies on text-to-text generation typically assume that the model could figure out what to attend to in the input and what to include in the output via seq2seq learning, with only the parallel training data and no additional guidance. However, it remains unclear whether current models can preserve important concepts in the source input, as seq2seq learning does not have explicit focus on the concepts and commonly used evaluation metrics also treat concepts equally important as other tokens. In this paper, we present a systematic analysis that studies whether current seq2seq models, especially pre-trained language models, are good enough for preserving important input concepts and to what extent explicitly guiding generation with the concepts as lexical constraints is beneficial. We answer the above questions by conducting extensive analytical experiments on four representative text-to-text generation tasks. Based on the observations, we then propose a simple yet effective framework to automatically extract, denoise, and enforce important input concepts as lexical constraints. This new method performs comparably or better than its unconstrained counterpart on automatic metrics, demonstrates higher coverage for concept preservation, and receives better ratings in the human evaluation. Our code is available at https://github.com/morningmoni/EDE.
A wide variety of NLP applications, such as machine translation, summarization, and dialog, involve text generation. One major challenge for these applications is how to evaluate whether such generated texts are actually fluent, accurate, or effectiv
We motivate and propose a suite of simple but effective improvements for concept-to-text generation called SAPPHIRE: Set Augmentation and Post-hoc PHrase Infilling and REcombination. We demonstrate their effectiveness on generative commonsense reason
Standard multi-task benchmarks are essential for driving the progress of general pretraining models to generalize to various downstream tasks. However, existing benchmarks such as GLUE and GLGE tend to focus on short text understanding and generation
We follow the step-by-step approach to neural data-to-text generation we proposed in Moryossef et al (2019), in which the generation process is divided into a text-planning stage followed by a plan-realization stage. We suggest four extensions to tha
Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-to-graph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two f