ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended level set method: a multiphase representation with perfect symmetric property, and its application to multi material topology optimization

61   0   0.0 ( 0 )
 نشر من قبل Takayuki Yamada
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides an extended level set (X-LS) based topology optimiza- tion method for multi material design. In the proposed method, each zero level set of a level set function {phi}ij represents the boundary between materials i and j. Each increase or decrease of {phi}ij corresponds to a material change between the two materials. This approach reduces the dependence of the initial configuration in the optimization calculation and simplifies the sensitivity analysis. First, the topology optimization problem is formulated in the X-LS representation. Next, the reaction-diffusion equation that updates the level set function is introduced, and an optimization algorithm that solves the equilibrium equations and the reaction-diffusion equation using the fi- nite element method is constructed. Finally, the validity and utility of the proposed topology optimization method are confirmed using two- and three- dimensional numerical examples.



قيم البحث

اقرأ أيضاً

Multi-material structural topology and shape optimization problems are formulated within a phase field approach. First-order conditions are stated and the relation of the necessary conditions to classical shape derivatives are discussed. An efficient numerical method based on an $H^1$-gradient projection method is introduced and finally several numerical results demonstrate the applicability of the approach.
86 - Zhi Zeng , Fulei Ma 2020
This paper presents an efficient gradient projection-based method for structural topological optimization problems characterized by a nonlinear objective function which is minimized over a feasible region defined by bilateral bounds and a single line ar equality constraint. The specialty of the constraints type, as well as heuristic engineering experiences are exploited to improve the scaling scheme, projection, and searching step. In detail, gradient clipping and a modified projection of searching direction under certain condition are utilized to facilitate the efficiency of the proposed method. Besides, an analytical solution is proposed to approximate this projection with negligible computation and memory costs. Furthermore, the calculation of searching steps is largely simplified. Benchmark problems, including the MBB, the force inverter mechanism, and the 3D cantilever beam are used to validate the effectiveness of the method. The proposed method is implemented in MATLAB which is open-sourced for educational usage.
In recent years, with the development of microarray technique, discovery of useful knowledge from microarray data has become very important. Biclustering is a very useful data mining technique for discovering genes which have similar behavior. In mic roarray data, several objectives have to be optimized simultaneously and often these objectives are in conflict with each other. A Multi Objective model is capable of solving such problems. Our method proposes a Hybrid algorithm which is based on the Multi Objective Particle Swarm Optimization for discovering biclusters in gene expression data. In our method, we will consider a low level of overlapping amongst the biclusters and try to cover all elements of the gene expression matrix. Experimental results in the bench mark database show a significant improvement in both overlap among biclusters and coverage of elements in the gene expression matrix.
We introduce a new dominance concept consisting of three new dominance metrics based on Lloyds (1967) mean crowding index. The new metrics link communities and species, whereas existing ones are applicable only to communities. Our community-level met ric is a function of Simpsons diversity index. For species, our metric quantifies the difference between community dominance and the dominance of a virtual community whose mean population size (per species) equals the population size of the focal species. The new metrics have at least two immediate applications: (i) acting as proxies for diversity in diversity-stability modeling (ii) replacing population abundance in reconstructing species dominance networks. The first application is demonstrated here using data from a longitudinal study of the human vaginal microbiome, and provides new insights relevant for microbial community stability and disease etiology.
Capturing the interaction between objects that have an extreme difference in Young s modulus or geometrical scale is a highly challenging topic for numerical simulation. One of the fundamental questions is how to build an accurate multi-scale method with optimal computational efficiency. In this work, we develop a material-point-spheropolygon discrete element method (MPM-SDEM). Our approach fully couples the material point method (MPM) and the spheropolygon discrete element method (SDEM) through the exchange of contact force information. It combines the advantage of MPM for accurately simulating elastoplastic continuum materials and the high efficiency of DEM for calculating the Newtonian dynamics of discrete near-rigid objects. The MPM-SDEM framework is demonstrated with an explicit time integration scheme. Its accuracy and efficiency are further analysed against the analytical and experimental data. Results demonstrate this method could accurately capture the contact force and momentum exchange between materials while maintaining favourable computational stability and efficiency. Our framework exhibits great potential in the analysis of multi-scale, multi-physics phenomena
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا