ﻻ يوجد ملخص باللغة العربية
In recent years, with the development of microarray technique, discovery of useful knowledge from microarray data has become very important. Biclustering is a very useful data mining technique for discovering genes which have similar behavior. In microarray data, several objectives have to be optimized simultaneously and often these objectives are in conflict with each other. A Multi Objective model is capable of solving such problems. Our method proposes a Hybrid algorithm which is based on the Multi Objective Particle Swarm Optimization for discovering biclusters in gene expression data. In our method, we will consider a low level of overlapping amongst the biclusters and try to cover all elements of the gene expression matrix. Experimental results in the bench mark database show a significant improvement in both overlap among biclusters and coverage of elements in the gene expression matrix.
We consider an optimization deployment problem of multistatic radar system (MSRS). Through the antenna placing and the transmitted power allocating, we optimally deploy the MSRS for two goals: 1) the first one is to improve the coverage ratio of surv
In transportation planning and development, transport network design problem seeks to optimize specific objectives (e.g. total travel time) through choosing among a given set of projects while keeping consumption of resources (e.g. budget) within the
Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, an
Machine learning techniques have been developed to learn from complete data. When missing values exist in a dataset, the incomplete data should be preprocessed separately by removing data points with missing values or imputation. In this paper, we pr
This paper provides an extended level set (X-LS) based topology optimiza- tion method for multi material design. In the proposed method, each zero level set of a level set function {phi}ij represents the boundary between materials i and j. Each incre