ﻻ يوجد ملخص باللغة العربية
We present numerical simulations for the three-body problem, in which three particles lie at rest at the vertex of a perturbed equilateral triangle. In the unperturbed problem, the three particles fall towards the center of mass of the system to form a three-body collision, or singularity, where the particles overlap in space and time. By perturbing the initial positions of the particles, we are able to study chaos in the vicinity of the singularity. Here we cover the full range in parameter space for binary formation due to three-body interactions of isolated single stars, covering the singular region corresponding to an equilateral triangle and extending to sufficiently deformed triangles that we enter the binary-single scattering regime (i.e., one side of the triangle is very short and the other two are very long). We make phase space plots to study the regular and ergodic subsets of our simulations independently and derive the expected properties of the left-over binaries from three-body binary formation in isotropic cluster environments. We further provide fits to the ergodic subset to characterize the properties of the left-over binaries. We identify the discrepancy between the statistical theory and the simulations to the regular subset of interactions, which exhibit only weak chaos. As we decrease the scale of the perturbations in the initial positions, the phase space becomes entirely dominated by regular interactions, according to our metric for chaos.
Eulers three-body problem is the problem of solving for the motion of a particle moving in a Newtonian potential generated by two point sources fixed in space. This system is integrable in the Liouville sense. We consider the Euler problem with the i
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that ar
We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction in to a series of discrete transformations in energy- and angular momentum-space.
This paper continues a numerical investigation of orbits evolved in `frozen, time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large
We present a numerical study of the application of the Shannon entropy technique to the planar restricted three-body problem in the vicinity of first-order interior mean-motion resonances with the perturber. We estimate the diffusion coefficient for