ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos in a generalized Eulers three-body problem

66   0   0.0 ( 0 )
 نشر من قبل Takahisa Igata
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takahisa Igata




اسأل ChatGPT حول البحث

Eulers three-body problem is the problem of solving for the motion of a particle moving in a Newtonian potential generated by two point sources fixed in space. This system is integrable in the Liouville sense. We consider the Euler problem with the inverse-square potential, which can be seen as a natural generalization of the three-body problem to higher-dimensional Newtonian theory. We identify a family of stable stationary orbits in the generalized Euler problem. These orbits guarantee the existence of stable bound orbits. Applying the Poincare map method to these orbits, we show that stable bound chaotic orbits appear. As a result, we conclude that the generalized Euler problem is nonintegrable.



قيم البحث

اقرأ أيضاً

125 - Barak Kol 2021
The three-body problem is a fundamental long-standing open problem, with applications in all branches of physics, including astrophysics, nuclear physics and particle physics. In general, conserved quantities allow to reduce the formulation of a mech anical problem to fewer degrees of freedom, a process known as dynamical reduction. However, extant reductions are either non-general, or hide the problems symmetry or include unexplained definitions. This paper presents a dynamical reduction that avoids these issues, and hence is general and natural. Any three-body configuration defines a triangle, and its orientation in space. Accordingly, we decompose the dynamical variables into the geometry (shape + size) and orientation of the triangle. The geometry variables are shown to describe the motion of an abstract point in a curved 3d space, subject to a potential-derived force and a magnetic-like force with a monopole charge. The orientation variables are shown to obey a dynamics analogous to the Euler equations for a rotating rigid body, only here the moments of inertia depend on the geometry variables, rather than being constant. The reduction rests on a novel symmetric solution to the center of mass constraint inspired by Lagranges solution to the cubic. The formulation of the orientation variables is novel and rests on a little known generalization of the Euler-Lagrange equations to non-coordinate velocities. Applications to special exact solutions and to the statistical solution are described or discussed. Moreover, a generalization to the four-body problem is presented.
We present numerical simulations for the three-body problem, in which three particles lie at rest at the vertex of a perturbed equilateral triangle. In the unperturbed problem, the three particles fall towards the center of mass of the system to form a three-body collision, or singularity, where the particles overlap in space and time. By perturbing the initial positions of the particles, we are able to study chaos in the vicinity of the singularity. Here we cover the full range in parameter space for binary formation due to three-body interactions of isolated single stars, covering the singular region corresponding to an equilateral triangle and extending to sufficiently deformed triangles that we enter the binary-single scattering regime (i.e., one side of the triangle is very short and the other two are very long). We make phase space plots to study the regular and ergodic subsets of our simulations independently and derive the expected properties of the left-over binaries from three-body binary formation in isotropic cluster environments. We further provide fits to the ergodic subset to characterize the properties of the left-over binaries. We identify the discrepancy between the statistical theory and the simulations to the regular subset of interactions, which exhibit only weak chaos. As we decrease the scale of the perturbations in the initial positions, the phase space becomes entirely dominated by regular interactions, according to our metric for chaos.
A three-component dynamic system with influence of pumping and nonlinear dissipation describing a quantum cavity electrodynamic device is studied. Different dynamical regimes are investigated in terms of divergent trajectories approaches and fractal statistics. It has been shown, that in such a system stable and unstable dissipative structures type of limit cycles can be formed with variation of pumping and nonlinear dissipation rate. Transitions to chaotic regime and the corresponding chaotic attractor are studied in details.
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that ar e derived from the Agekyan-Anosova maps and homology radius $R_{mathcal{H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Levy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Levy flight interactions follow a power-law distribution. Levy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Levy flight interactions. We propose a new physically-motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Levy flight interactions. We discuss mass ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.
The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and t he Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا