ﻻ يوجد ملخص باللغة العربية
The Vietoris hyperspace $NC^{*}(X)$ of noncut subcontinua of a metric continuum $X$ has been previously studied by several authors. In this paper we prove that if $X$ is a dendrite and the set of endpoints of $X$ is dense, then $NC^{*}(X)$ is homeomorphic to the Baire space of irrational numbers.
For a metric space $X$, let $mathsf FX$ be the space of all nonempty finite subsets of $X$ endowed with the largest metric $d^1_{mathsf FX}$ such that for every $ninmathbb N$ the map $X^ntomathsf FX$, $(x_1,dots,x_n)mapsto {x_1,dots,x_n}$, is non-exp
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of clo
We introduce and study some generalizations of regular spaces, which were motivated by studying continuity properties of functions between (regular) topological spaces. In particular, we prove that a first-countable Hausdorff topological space is reg
A Hausdorff topological group is called minimal if it does not admit a strictly coarser Hausdorff group topology. This paper mostly deals with the topological group $H_+(X)$ of order-preserving homeomorphisms of a compact linearly ordered connected s
Classes SSGP(n)(n < omega) of topological groups are defined, and the class-theoretic inclusions SSGP(n) subseteq SSGP(n+1) subseteq m.a.p. are established and shown proper. These classes are investigated with respect to the properties normally studi