ﻻ يوجد ملخص باللغة العربية
In this work, we study the real-time evolution of periodically driven (Floquet) systems on a quantum computer using IBM quantum devices. We consider a driven Landau-Zener model and compute the transition probability between the Floquet steady states as a function of time. We find that for this simple one-qubit model, Floquet states can develop in real-time, as indicated by the transition probability between Floquet states. Next, we model light-driven spin chains and compute the time-dependent antiferromagnetic order parameter. We consider models arising from light coupling to the underlying electrons as well as those arising from light coupling to phonons. For the two-spin chains, the quantum devices yield time evolutions that match the effective Floquet Hamiltonian evolution for both models once readout error mitigation is included. For three-spin chains, zero-noise extrapolation yields a time dependence that follows the effective Floquet time evolution. Therefore, the current IBM quantum devices can provide information on the dynamics of small Floquet systems arising from light drives once error mitigation procedures are implemented.
In this letter we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires
The decoherence of mixed electron-nuclear spin qubits is a topic of great current importance, but understanding is still lacking: while important decoherence mechanisms for spin qubits arise from quantum spin bath environments with slow decay of corr
Measurement of charge configurations in few-electron quantum dots is a vital technique for spin-based quantum information processing. While fast and high-fidelity measurement is possible by using proximal quantum dot charge sensors, their operating r
Recent work has demonstrated a new route to discrete time crystal physics in quantum spin chains by periodically driving nearest-neighbor exchange interactions in gate-defined quantum dot arrays [arXiv:2006.10913]. Here, we present a detailed analysi
String breaking is a central dynamical process in theories featuring confinement, where a string connecting two charges decays at the expense of the creation of new particle-antiparticle pairs. Here, we show that this process can also be observed in