ﻻ يوجد ملخص باللغة العربية
String breaking is a central dynamical process in theories featuring confinement, where a string connecting two charges decays at the expense of the creation of new particle-antiparticle pairs. Here, we show that this process can also be observed in quantum Ising chains where domain walls get confined either by a symmetry-breaking field or by long-range interactions. We find that string breaking occurs, in general, as a two-stage process: First, the initial charges remain essentially static and stable. The connecting string, however, can become a dynamical object. We develop an effective description of this motion, which we find is strongly constrained. In the second stage, which can be severely delayed due to these dynamical constraints, the string finally breaks. We observe that the associated time scale can depend crucially on the initial separation between domain walls and can grow by orders of magnitude by changing the distance by just a few lattice sites. We discuss how our results generalize to one-dimensional confining gauge theories and how they can be made accessible in quantum simulator experiments such as Rydberg atoms or trapped ions.
We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable s
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem
We revisit early suggestions to observe spin-charge separation (SCS) in cold-atom settings {in the time domain} by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse perturbations are initially created at the center o
Using the framework of infinite Matrix Product States, the existence of an textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, ar