ﻻ يوجد ملخص باللغة العربية
We prove that the principal pivot transform (also known as the partial inverse, sweep operator, or exchange operator in various contexts) maps matrices with positive imaginary part to matrices with positive imaginary part. We show that the principal pivot transform is matrix monotone by establishing Hermitian square representations for the imaginary part and the derivative.
In this paper, some more properties of the generalized principal pivot transform are derived. Necessary and sufficient conditions for the equality between Moore-Penrose inverse of a generalized principal pivot transform and its complementary generali
Recently, the authors studied the connection between each maximal monotone operator T and a family H(T) of convex functions. Each member of this family characterizes the operator and satisfies two particular inequalities. The aim of this paper is t
We study the problem of phase retrieval in which one aims to recover a function $f$ from the magnitude of its wavelet transform $|mathcal{W}_psi f|$. We consider bandlimited functions and derive new uniqueness results for phase retrieval, where the w
An analysis of the stability of the spindle transform, introduced in (Three dimensional Compton scattering tomography arXiv:1704.03378 [math.FA]), is presented. We do this via a microlocal approach and show that the normal operator for the spindle tr
We define the principal divisor of a free noncommuatative function. We use these divisors to compare the determinantal singularity sets of free noncommutative functions. We show that the divisor of a noncommutative rational function is the difference