ﻻ يوجد ملخص باللغة العربية
In this paper, some more properties of the generalized principal pivot transform are derived. Necessary and sufficient conditions for the equality between Moore-Penrose inverse of a generalized principal pivot transform and its complementary generalized principal pivot transform are presented. It has been shown that the generalized principal pivot transform preserves the rank of symmetric part of a given square matrix. These results appear to be more generalized than the existing ones. Inheritance property of $P_{dagger}$-matrix are also characterized for generalized principal pivot transform.
We prove that the principal pivot transform (also known as the partial inverse, sweep operator, or exchange operator in various contexts) maps matrices with positive imaginary part to matrices with positive imaginary part. We show that the principal
Quasicrystals are tempered distributions $mu$ which satisfy symmetric conditions on $mu$ and $widehat mu$. This suggests that techniques from time-frequency analysis could possibly be useful tools in the study of such structures. In this paper we exp
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particul
We define the principal divisor of a free noncommuatative function. We use these divisors to compare the determinantal singularity sets of free noncommutative functions. We show that the divisor of a noncommutative rational function is the difference
An analysis of the stability of the spindle transform, introduced in (Three dimensional Compton scattering tomography arXiv:1704.03378 [math.FA]), is presented. We do this via a microlocal approach and show that the normal operator for the spindle tr