ﻻ يوجد ملخص باللغة العربية
Previous researches on high-energy photon events from gamma-ray bursts~(GRBs) suggest a light speed variation $v(E)=c(1-E/E_{mathrm{LV}})$ with $E_{mathrm{LV}}=3.6times10^{17}~mathrm{ GeV}$, together with a pre-burst scenario that hight-energy photons come out about 10 seconds earlier than low-energy photons at the GRB source. However, in the Lorentz invariance violating scenario with an energy dependent light speed considered here, high-energy photons travel slower than low-energy photons due to the light speed variation, so that they are usually detected after low-energy photons in observed GRB data. Here we find four high-energy photon events which were observed earlier than low-energy photons from Fermi Gamma-ray Space Telescope~(FGST), and analysis on these photon events supports the pre-burst scenario of high energy photons from GRBs and the energy dependence of light speed listed above.
Previous researches on high-energy neutrino events from gamma-ray bursters (GRBs) suggest a neutrino speed variation $v(E)=c(1pm E/E^{ u}_{mathrm{LV}})$ with ${E}^{ u}_{rm LV}=(6.4pm 1.5)times10^{17}~{ rm GeV}$, together with an intrinsic time differ
We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the Gamma-ray burst polarimeter (GAP) aboard IKAROS solar sail mission. We detected linear polarization signals from each burs
We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected
We calibrated the peak energy-peak luminosity relation of GRBs (so called Yonetoku relation) using 33 events with the redshift $z < 1.62$ without assuming any cosmological models. The luminosity distances to GRBs are estimated from those of large amo
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with