ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

162   0   0.0 ( 0 )
 نشر من قبل Eric Thrane
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGOs fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.



قيم البحث

اقرأ أيضاً

We present the first three-dimensional (3D) smoothed-particle-hydrodynamics (SPH) simulations of the induced gravitational collapse (IGC) scenario of long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe). We simulate the SN explosion of a carbon-oxygen core (CO$_{rm core}$) forming a binary system with a neutron star (NS) companion. We follow the evolution of the SN ejecta, including their morphological structure, subjected to the gravitational field of both the new NS ($ u$NS) formed at the center of the SN, and the one of the NS companion. We compute the accretion rate of the SN ejecta onto the NS companion as well as onto the $ u$NS from SN matter fallback. We determine the fate of the binary system for a wide parameter space including different CO$_{rm core}$ and NS companion masses, orbital periods and SN explosion geometry and energies. We identify, for selected NS nuclear equations-of-state, the binary parameters leading the NS companion, by hypercritical accretion, either to the mass-shedding limit, or to the secular axisymmetric instability for gravitational collapse to a black hole (BH), or to a more massive, fast rotating, stable NS. We also assess whether the binary remains or not gravitationally bound after the SN explosion, hence exploring the space of binary and SN explosion parameters leading to $ u$NS-NS and $ u$NS-BH binaries. The consequences of our results for the modeling of long GRBs, i.e. X-ray flashes and binary-driven hypernovae, are discussed.
We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in t his analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGOs fifth and sixth science runs and Virgos first, second and third science runs . The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mecha nism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ~1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10^{44} erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between November 2006 and June 2009, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0x10^{44} d_1^2 erg and 1.4x10^{47} d_1^2 erg respectively, where d_1 = d_{0501} / 1 kpc and d_{0501} is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.
We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long O(10s) gravitational-wave transients. The algorithm utilizes the auto-power in each detector as a discriminator between well -behaved Gaussian noise (possibly including a gravitational-wave signal) and glitches. We test the algorithm with both Monte Carlo noise and time-shifted data from the LIGO S5 science run and find that it is effective at removing a significant fraction of glitches while keeping the vast majority (99.6%) of the data. Using an accretion disk instability signal model, we estimate that the algorithm is accidentally triggered at a rate of less than 10^-5% by realistic signals, and less than 3% even for exceptionally loud signals. We conclude that the algorithm is a safe and effective method for cleaning the cross-correlation data used in searches for long gravitational-wave transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا